SPRAD62 February   2023 F29H850TU , TMS320F280023C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038C-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2Serial Port Design Methodology
    1. 2.1 Step 1: Understand Design Requirements
    2. 2.2 Step 2: Identify Required Inputs to the CLB Tile
      1. 2.2.1 GPIO Input Qualification
      2. 2.2.2 CLB Input Settings
    3. 2.3 Step 3: Identify Required Outputs from CLB Logic
      1. 2.3.1 Synchronizing Outputs Signals
      2. 2.3.2 Output Signal Conditioning
    4. 2.4 Step 4: Design the CLB Logic
      1. 2.4.1 Resource Allocation
      2. 2.4.2 Exchanging Data Between CLB FIFOs and MCU RAM
      3. 2.4.3 CLB Logic Status and Trigger Flags
        1. 2.4.3.1 Status/Flag Bits
        2. 2.4.3.2 Trigger Bits
    5. 2.5 Step 5: Simulate the Logic Design
    6. 2.6 Step 6: Test the CLB Logic
  5. 3Example A: Using the CLB to Input and Output a TDM Stream in Audio Applications
    1. 3.1 Example Overview
    2. 3.2 Step 1: Understand Design Requirements
    3. 3.3 Step 2: Identify Required Inputs to the CLB Tile
    4. 3.4 Step 3: Identify Required Outputs from CLB Logic
    5. 3.5 Step 4: Design the CLB Logic
      1. 3.5.1 Resource Allocation
      2. 3.5.2 TDM Word Counter
      3. 3.5.3 FSYNC and DATA1 Output Synchronization
    6. 3.6 Step 5: Simulate the Logic Design
    7. 3.7 Step 6: Test the CLB Logic
      1. 3.7.1 Hardware Setup and Connections
      2. 3.7.2 Software Setup
      3. 3.7.3 Testing Output Setup and Hold Times
      4. 3.7.4 Testing Data Integrity
  6. 4Example B: Using the CLB to Implement a Custom Communication Bus for LED Driver in Lighting Applications
    1. 4.1 Example Overview
    2. 4.2 Step 1: Understand Design Requirements
    3. 4.3 Step 2: Identify Required Inputs to the CLB Tile
    4. 4.4 Step 3: Identify Required Outputs From CLB Logic
    5. 4.5 Step 4: Design the CLB Logic
      1. 4.5.1 TX Tile Logic
      2. 4.5.2 RX Tile Logic
      3. 4.5.3 Data Clocking
    6. 4.6 Step 5: Simulate the Logic Design
    7. 4.7 Step 6: Test the CLB Logic
      1. 4.7.1 Hardware Setup and Connections
      2. 4.7.2 Software Setup
      3. 4.7.3 Testing Output Setup and Hold Times
  7. 5References

Output Signal Conditioning

Each CLB output can be passed through an asynchronous output conditioning (AOC) block where it can be inverted and gated before being passed to the output XBARs. The AOC could be used to invert the signal before passing it to the output.

Note: If a CLB input signal, say a serial clock, needs to be passed through the CLB tile unsynchronized to the internal CLB clock, the input signal must be passed through the CLB tile using boundary input 4 or 5. From the tile input the signal must be passed directly to the AOC where it can be inverted, if desired. Additionally, the AOC output must be brought to the micronctroller pin through the GPIO OUTPUT XBAR, not the CLB OUTPUT XBAR.