SPRAD85A March   2023  – September 2024 AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
    1. 1.1 Before Getting Started With the Custom Board Design
    2. 1.2 Processor Selection
    3. 1.3 Technical Documentation
      1. 1.3.1 Updated SK Schematics With Design, Review and Cad Notes Added
      2. 1.3.2 FAQs to Support Custom Board Design
    4. 1.4 Design Documentation
  5. Block Diagram
    1. 2.1 Constructing the Block Diagram
    2. 2.2 Configuring the Boot Mode
    3. 2.3 Confirming PinMux (PinMux Configuration)
  6. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power
      2. 3.1.2 Discrete Power
    2. 3.2 Power (Supply) Rails
      1. 3.2.1 Core Supply
      2. 3.2.2 Peripheral Power Supply
      3. 3.2.3 Dynamic Switching Dual-Voltage IO Supply LDO
      4. 3.2.4 Internal LDOs for IO Groups (Processor)
      5. 3.2.5 Dual-Voltage IOs (for Processor IO Groups)
      6. 3.2.6 VPP (eFuse ROM programming) Supply
    3. 3.3 Determining Board Power Requirements
    4. 3.4 Power Supply Filters
    5. 3.5 Power Supply Decoupling and Bulk Capacitors
      1. 3.5.1 Note on PDN Target Impedance
    6. 3.6 Power Supply Sequencing
    7. 3.7 Supply Diagnostics
    8. 3.8 Power Supply Monitoring
  7. Processor Clocking
    1. 4.1 Processor External Clock Source
      1. 4.1.1 Unused WKUP_LFOSC0
      2. 4.1.2 LVCMOS Digital Clock Source
      3. 4.1.3 Crystal Selection
    2. 4.2 Processor Clock Outputs
  8. JTAG (Joint Test Action Group)
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
      2. 5.1.2 Implementation of JTAG / Emulation
      3. 5.1.3 Connection of JTAG Interface Signals
  9. Configuration (Processor) and Initialization (Processor and Device)
    1. 6.1 Processor Reset
    2. 6.2 Latching of Boot Mode Configuration
    3. 6.3 Resetting the Attached Devices
    4. 6.4 Watchdog Timer
  10. Processor Peripherals
    1. 7.1  Selecting Peripherals Across Domains
    2. 7.2  Memory (DDRSS)
      1. 7.2.1 Processor DDR Subsystem and Device Register Configuration
      2. 7.2.2 Calibration Resistor Connection for DDRSS
      3. 7.2.3 Attached Memory Device ZQ and Reset_N Connection
    3. 7.3  Media and Data Storage Interfaces
    4. 7.4  Common Platform Ethernet Switch 3-port Gigabit (CPSW3G - for Ethernet Interface)
    5. 7.5  Programmable Real-Time Unit Subsystem (PRUSS)
    6. 7.6  Universal Serial Bus (USB) Subsystem
    7. 7.7  General Connectivity Peripherals
    8. 7.8  Display Subsystem (DSS)
    9. 7.9  Camera Subsystem (CSI)
    10. 7.10 Connection of Processor Power Supply Pins, Unused Peripherals and IOs
      1. 7.10.1 External Interrupt (EXTINTn)
      2. 7.10.2 Reserved (RSVD) Pins
  11. Interfacing of Processor IOs ( LVCMOS or Open-Drain or Fail-Safe Type IO Buffers) and Simulations
  12. Processor Current Rating and Thermal Analysis
    1. 9.1 Power Estimation
    2. 9.2 Maximum Current Rating for Different Supply Rails
    3. 9.3 Power Modes
    4. 9.4 Thermal Design Guidelines
      1. 9.4.1 VTM (Voltage Thermal Management Module)
  13. 10Schematics:- Design, Capture, Entry and Review
    1. 10.1 Selection of Components and Values
    2. 10.2 Schematic Design and Capture
    3. 10.3 Schematics Review
  14. 11Floor Planning, Layout, Routing Guidelines, Board Layers and Simulation
    1. 11.1 Escape Routing for PCB Design
    2. 11.2 LPDDR4 Design and Layout Guidelines
    3. 11.3 High-Speed Differential Signals Routing Guidelines
    4. 11.4 Board Layer Count and Stack-up
      1. 11.4.1 Simulation Recommendations
    5. 11.5 Reference for Steps to be Followed for Running Simulation
  15. 12Custom Board Assembly and Testing
    1. 12.1 Guidelines and Board Bring-up Tips
  16. 13Device Handling and Assembly
    1. 13.1 Soldering Recommendations
      1. 13.1.1 Additional References
  17. 14References
    1. 14.1 Processor Specific
    2. 14.2 Common
  18. 15Terminology
  19. 16Revision History

Updated SK Schematics With Design, Review and Cad Notes Added

During custom board design, customers tend to reuse the SK design files and make edits to the design file. Alternatively customers reuse some of the common implementations including the processor, memory and communication interfaces. Since the SK is expected to have additional functionalities, customers optimize the SK implementation to suit their board design requirements. While optimizing the SK schematics, errors get introduced into the custom design that could cause functional, performance or reliability issues. When optimizing customers have queries regarding the SK implementation resulting in design errors. Many of the optimization and design errors are common across designs. Based on the learning and data sheet pin connectivity recommendations, comprehensive Design Notes (D-Note:), Review Notes (R-Note:) and Cad Notes (Cad Note:) have been added near each section of the SK schematic that customers could review and follow to minimize errors. Additional files as part of the design downloads have been included to support customer evaluation (https://www.ti.com/lit/zip/sprr491).

The list of available document in the single big zip files is listed in the below product overview documents.

SK-AM62A-LP Design Package Folder and Files List

Refer below FAQs that includes the PDF schematics and additional information related to starter kits:

[FAQ] AM62A7 / AM62A7-Q1 / AM62A3 / AM62A3-Q1 - Custom board hardware design - Design and Review notes for Reuse of SK-AM62A-LP Schematics.