SPRAD85B September   2024  – December 2024 AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62D-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
    1. 1.1 Before Getting Started With the Custom Board Design
    2. 1.2 Processor Selection
    3. 1.3 Technical Documentation
      1. 1.3.1 Updated SK Schematics With Design, Review and Cad Notes Added
        1. 1.3.1.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
        2. 1.3.1.2 AM62D-Q1
      2. 1.3.2 FAQs to Support Custom Board Design
    4. 1.4 Custom Board Design Documentation
  5. Block Diagram
    1. 2.1 Constructing the Block Diagram
    2. 2.2 Configuring the Boot Mode
    3. 2.3 Confirming PinMux (PinMux Configuration)
  6. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power
      2. 3.1.2 Discrete Power
    2. 3.2 Power (Supply) Rails
      1. 3.2.1 Core Supply
      2. 3.2.2 Peripheral Power Supply
      3. 3.2.3 Dynamic Switching Dual-Voltage IO Supply LDO
      4. 3.2.4 Internal LDOs for IO Groups (Processor)
      5. 3.2.5 Dual-Voltage IOs (for Processor IO Groups)
      6. 3.2.6 VPP (eFuse ROM programming) Supply
    3. 3.3 Determining Board Power Requirements
    4. 3.4 Power Supply Filters
    5. 3.5 Power Supply Decoupling and Bulk Capacitors
      1. 3.5.1 Note on PDN Target Impedance
    6. 3.6 Power Supply Sequencing
    7. 3.7 Supply Diagnostics
    8. 3.8 Power Supply Monitoring
  7. Processor Clocking
    1. 4.1 Processor External Clock Source
      1. 4.1.1 Unused WKUP_LFOSC0
      2. 4.1.2 LVCMOS Digital Clock Source
      3. 4.1.3 Crystal Selection
    2. 4.2 Processor Clock Outputs
  8. JTAG (Joint Test Action Group)
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
        1. 5.1.1.1 BSDL File
      2. 5.1.2 Implementation of JTAG / Emulation
      3. 5.1.3 Connection of JTAG Interface Signals
  9. Configuration (Processor) and Initialization (Processor and Device)
    1. 6.1 Processor Reset
    2. 6.2 Latching of Boot Mode Configuration
    3. 6.3 Resetting the Attached Devices
    4. 6.4 Watchdog Timer
  10. Processor Peripherals
    1. 7.1  Selecting Peripherals Across Domains
    2. 7.2  Memory Controller (DDRSS)
      1. 7.2.1 Processor DDR Subsystem and Device Register Configuration
      2. 7.2.2 Calibration Resistor Connection for DDRSS
      3. 7.2.3 Attached Memory Device ZQ and Reset_N Connection
    3. 7.3  Media and Data Storage Interfaces
    4. 7.4  Common Platform Ethernet Switch 3-port Gigabit (CPSW3G - for Ethernet Interface)
    5. 7.5  Programmable Real-Time Unit Subsystem (PRUSS)
    6. 7.6  Universal Serial Bus (USB) Subsystem
    7. 7.7  General Connectivity Peripherals
    8. 7.8  Display Subsystem (DSS)
      1. 7.8.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
      2. 7.8.2 AM62D-Q1
    9. 7.9  Camera Interface
    10. 7.10 Connection of Processor Power Supply Pins, Unused Peripherals and IOs
      1. 7.10.1 External Interrupt (EXTINTn)
      2. 7.10.2 RSVD Reserved Pins (Signals)
  11. Interfacing of Processor IOs (LVCMOS or Open-Drain or Fail-Safe Type IO Buffers) and Simulations
    1. 8.1 IBIS Model
    2. 8.2 IBIS-AMI Model
  12. Processor Current Rating and Thermal Analysis
    1. 9.1 Power Estimation
    2. 9.2 Maximum Current Rating for Different Supply Rails
    3. 9.3 Power Modes
    4. 9.4 Thermal Design Guidelines
      1. 9.4.1 Thermal Model
      2. 9.4.2 VTM (Voltage Thermal Management Module)
  13. 10Schematics:- Design, Capture, Entry and Review
    1. 10.1 Selection of Components and Values
    2. 10.2 Schematic Design and Capture
    3. 10.3 Schematics Review
  14. 11Floor Planning, Layout, Routing Guidelines, Board Layers and Simulation
    1. 11.1 Escape Routing for PCB Design
    2. 11.2 LPDDR4 Design and Layout Guidelines
    3. 11.3 High-Speed Differential Signals Routing Guidelines
    4. 11.4 Board Layer Count and Stack-up
      1. 11.4.1 Simulation Recommendations
    5. 11.5 Reference for Steps to be Followed for Running Simulation
  15. 12Custom Board Assembly and Testing
    1. 12.1 Guidelines and Board Bring-up Tips
  16. 13Device Handling and Assembly
    1. 13.1 Soldering Recommendations
      1. 13.1.1 Additional References
  17. 14References
    1. 14.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
    2. 14.2 AM62D-Q1
    3. 14.3 Common
  18. 15Terminology
  19. 16Revision History

General Connectivity Peripherals

The processor family supports multiple instances of UART, Multichannel Serial Peripheral Interface (MCSPI), I2C, Multichannel Audio Serial Port (MCASP), Enhanced Pulse Width Modulator (EPWM), Enhanced Quadrature Encoder Pulse (EQEP), Enhanced Capture (ECAP), MCAN (Modular Controller Area Network) with Full CAN-FD support and GPIO. All LVCMOS IOs can be configured as GPIO.

Note:

For I2C interfaces with open-drain output type buffer (MCU_I2C0 and WKUP_I2C0), an external pull is recommended irrespective of peripheral usage and IO configuration. Refer Pin Connectivity Requirements section of device-specific data sheet.

When the open-drain output type buffer I2C interfaces are pulled to 3.3V supply, the inputs have slew rate limit specified. An RC can be used to limit the slew rate. For RC implementation, refer Starter Kit SK-AM62P-LP for implementation.

An external pullup is recommended for the I2C interfaces (I2C0-3) with LVCMOS IOs emulated open-drain outputs when the IOs are configured for I2C interface. For the available LVCMOS IOs with emulated open-drain output I2C instances, refer the device-specific data sheet.

For more information, refer below FAQs:

[FAQ] AM62A7 / AM62A3 Custom board hardware design – I2C interface

[FAQ] AM62A7-Q1: Internal pull configuration registers for MCU_I2C0 and WKUP_I2C0

Above FAQs are generic and can also be used for AM62D-Q1 family of processors.

The number of peripheral instances available depends on the processor selection. The required interfaces can be configured using the SysConfig-PinMux tool based on the application.

For more details, refer the Peripherals chapter of the device-specific TRM.