SPRAD85B September   2024  – December 2024 AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62D-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
    1. 1.1 Before Getting Started With the Custom Board Design
    2. 1.2 Processor Selection
    3. 1.3 Technical Documentation
      1. 1.3.1 Updated SK Schematics With Design, Review and Cad Notes Added
        1. 1.3.1.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
        2. 1.3.1.2 AM62D-Q1
      2. 1.3.2 FAQs to Support Custom Board Design
    4. 1.4 Custom Board Design Documentation
  5. Block Diagram
    1. 2.1 Constructing the Block Diagram
    2. 2.2 Configuring the Boot Mode
    3. 2.3 Confirming PinMux (PinMux Configuration)
  6. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power
      2. 3.1.2 Discrete Power
    2. 3.2 Power (Supply) Rails
      1. 3.2.1 Core Supply
      2. 3.2.2 Peripheral Power Supply
      3. 3.2.3 Dynamic Switching Dual-Voltage IO Supply LDO
      4. 3.2.4 Internal LDOs for IO Groups (Processor)
      5. 3.2.5 Dual-Voltage IOs (for Processor IO Groups)
      6. 3.2.6 VPP (eFuse ROM programming) Supply
    3. 3.3 Determining Board Power Requirements
    4. 3.4 Power Supply Filters
    5. 3.5 Power Supply Decoupling and Bulk Capacitors
      1. 3.5.1 Note on PDN Target Impedance
    6. 3.6 Power Supply Sequencing
    7. 3.7 Supply Diagnostics
    8. 3.8 Power Supply Monitoring
  7. Processor Clocking
    1. 4.1 Processor External Clock Source
      1. 4.1.1 Unused WKUP_LFOSC0
      2. 4.1.2 LVCMOS Digital Clock Source
      3. 4.1.3 Crystal Selection
    2. 4.2 Processor Clock Outputs
  8. JTAG (Joint Test Action Group)
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
        1. 5.1.1.1 BSDL File
      2. 5.1.2 Implementation of JTAG / Emulation
      3. 5.1.3 Connection of JTAG Interface Signals
  9. Configuration (Processor) and Initialization (Processor and Device)
    1. 6.1 Processor Reset
    2. 6.2 Latching of Boot Mode Configuration
    3. 6.3 Resetting the Attached Devices
    4. 6.4 Watchdog Timer
  10. Processor Peripherals
    1. 7.1  Selecting Peripherals Across Domains
    2. 7.2  Memory Controller (DDRSS)
      1. 7.2.1 Processor DDR Subsystem and Device Register Configuration
      2. 7.2.2 Calibration Resistor Connection for DDRSS
      3. 7.2.3 Attached Memory Device ZQ and Reset_N Connection
    3. 7.3  Media and Data Storage Interfaces
    4. 7.4  Common Platform Ethernet Switch 3-port Gigabit (CPSW3G - for Ethernet Interface)
    5. 7.5  Programmable Real-Time Unit Subsystem (PRUSS)
    6. 7.6  Universal Serial Bus (USB) Subsystem
    7. 7.7  General Connectivity Peripherals
    8. 7.8  Display Subsystem (DSS)
      1. 7.8.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
      2. 7.8.2 AM62D-Q1
    9. 7.9  Camera Interface
    10. 7.10 Connection of Processor Power Supply Pins, Unused Peripherals and IOs
      1. 7.10.1 External Interrupt (EXTINTn)
      2. 7.10.2 RSVD Reserved Pins (Signals)
  11. Interfacing of Processor IOs (LVCMOS or Open-Drain or Fail-Safe Type IO Buffers) and Simulations
    1. 8.1 IBIS Model
    2. 8.2 IBIS-AMI Model
  12. Processor Current Rating and Thermal Analysis
    1. 9.1 Power Estimation
    2. 9.2 Maximum Current Rating for Different Supply Rails
    3. 9.3 Power Modes
    4. 9.4 Thermal Design Guidelines
      1. 9.4.1 Thermal Model
      2. 9.4.2 VTM (Voltage Thermal Management Module)
  13. 10Schematics:- Design, Capture, Entry and Review
    1. 10.1 Selection of Components and Values
    2. 10.2 Schematic Design and Capture
    3. 10.3 Schematics Review
  14. 11Floor Planning, Layout, Routing Guidelines, Board Layers and Simulation
    1. 11.1 Escape Routing for PCB Design
    2. 11.2 LPDDR4 Design and Layout Guidelines
    3. 11.3 High-Speed Differential Signals Routing Guidelines
    4. 11.4 Board Layer Count and Stack-up
      1. 11.4.1 Simulation Recommendations
    5. 11.5 Reference for Steps to be Followed for Running Simulation
  15. 12Custom Board Assembly and Testing
    1. 12.1 Guidelines and Board Bring-up Tips
  16. 13Device Handling and Assembly
    1. 13.1 Soldering Recommendations
      1. 13.1.1 Additional References
  17. 14References
    1. 14.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
    2. 14.2 AM62D-Q1
    3. 14.3 Common
  18. 15Terminology
  19. 16Revision History

LPDDR4 Design and Layout Guidelines

Refer the AM62Ax, AM62Px, AM62Dx LPDDR4 Board Design and Layout Guidelines. The goal of the guide is to simplify the LPDDR4 implementation. Requirements have been captured as a set of layout (placement and routing) guidelines that allow board designers to successfully implement a robust design for the topologies supported by the processor. Any follow-up design support that may be required will be provided only for board designs using LPDDR4 memory that follow the AM62Ax, AM62Px, AM62Dx LPDDR4 Board Design and Layout Guidelines.

Refer the AM62Ax, AM62Px, AM62Dx LPDDR4 Board Design and Layout Guidelines for the recommended target impedance for the LPDDR4 clock, address and control signals and for information regarding LPDDR4 Count, Channel Width, Number of Channels, Number of Die, Number of Ranks.

For the propagation delay, the delay to be considered for LPDDR4 is the delay related to the traces on the board. On a need basis, the package delay that has been included in the Appendix: SOC Package Delays of AM62Ax, AM62Px, AM62Dx LPDDR4 Board Design and Layout Guidelines when required can be referenced.

The recommendation is to perform signal integrity (SI) simulations during board schematic design and layout stage.

Note:

Data bits swizzle and byte swap within a channel is supported by the family of processors. Refer AM62Ax, AM62Px, AM62Dx LPDDR4 Board Design and Layout Guidelines.

Note:

Interface to DDR4 memory is currently not supported.

Note:

DDR2 and DDR3 interfaces are not supported.