SPRAD85B September   2024  – December 2024 AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62D-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Introduction
    1. 1.1 Before Getting Started With the Custom Board Design
    2. 1.2 Processor Selection
    3. 1.3 Technical Documentation
      1. 1.3.1 Updated SK Schematics With Design, Review and Cad Notes Added
        1. 1.3.1.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
        2. 1.3.1.2 AM62D-Q1
      2. 1.3.2 FAQs to Support Custom Board Design
    4. 1.4 Custom Board Design Documentation
  5. Block Diagram
    1. 2.1 Constructing the Block Diagram
    2. 2.2 Configuring the Boot Mode
    3. 2.3 Confirming PinMux (PinMux Configuration)
  6. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power
      2. 3.1.2 Discrete Power
    2. 3.2 Power (Supply) Rails
      1. 3.2.1 Core Supply
      2. 3.2.2 Peripheral Power Supply
      3. 3.2.3 Dynamic Switching Dual-Voltage IO Supply LDO
      4. 3.2.4 Internal LDOs for IO Groups (Processor)
      5. 3.2.5 Dual-Voltage IOs (for Processor IO Groups)
      6. 3.2.6 VPP (eFuse ROM programming) Supply
    3. 3.3 Determining Board Power Requirements
    4. 3.4 Power Supply Filters
    5. 3.5 Power Supply Decoupling and Bulk Capacitors
      1. 3.5.1 Note on PDN Target Impedance
    6. 3.6 Power Supply Sequencing
    7. 3.7 Supply Diagnostics
    8. 3.8 Power Supply Monitoring
  7. Processor Clocking
    1. 4.1 Processor External Clock Source
      1. 4.1.1 Unused WKUP_LFOSC0
      2. 4.1.2 LVCMOS Digital Clock Source
      3. 4.1.3 Crystal Selection
    2. 4.2 Processor Clock Outputs
  8. JTAG (Joint Test Action Group)
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
        1. 5.1.1.1 BSDL File
      2. 5.1.2 Implementation of JTAG / Emulation
      3. 5.1.3 Connection of JTAG Interface Signals
  9. Configuration (Processor) and Initialization (Processor and Device)
    1. 6.1 Processor Reset
    2. 6.2 Latching of Boot Mode Configuration
    3. 6.3 Resetting the Attached Devices
    4. 6.4 Watchdog Timer
  10. Processor Peripherals
    1. 7.1  Selecting Peripherals Across Domains
    2. 7.2  Memory Controller (DDRSS)
      1. 7.2.1 Processor DDR Subsystem and Device Register Configuration
      2. 7.2.2 Calibration Resistor Connection for DDRSS
      3. 7.2.3 Attached Memory Device ZQ and Reset_N Connection
    3. 7.3  Media and Data Storage Interfaces
    4. 7.4  Common Platform Ethernet Switch 3-port Gigabit (CPSW3G - for Ethernet Interface)
    5. 7.5  Programmable Real-Time Unit Subsystem (PRUSS)
    6. 7.6  Universal Serial Bus (USB) Subsystem
    7. 7.7  General Connectivity Peripherals
    8. 7.8  Display Subsystem (DSS)
      1. 7.8.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
      2. 7.8.2 AM62D-Q1
    9. 7.9  Camera Interface
    10. 7.10 Connection of Processor Power Supply Pins, Unused Peripherals and IOs
      1. 7.10.1 External Interrupt (EXTINTn)
      2. 7.10.2 RSVD Reserved Pins (Signals)
  11. Interfacing of Processor IOs (LVCMOS or Open-Drain or Fail-Safe Type IO Buffers) and Simulations
    1. 8.1 IBIS Model
    2. 8.2 IBIS-AMI Model
  12. Processor Current Rating and Thermal Analysis
    1. 9.1 Power Estimation
    2. 9.2 Maximum Current Rating for Different Supply Rails
    3. 9.3 Power Modes
    4. 9.4 Thermal Design Guidelines
      1. 9.4.1 Thermal Model
      2. 9.4.2 VTM (Voltage Thermal Management Module)
  13. 10Schematics:- Design, Capture, Entry and Review
    1. 10.1 Selection of Components and Values
    2. 10.2 Schematic Design and Capture
    3. 10.3 Schematics Review
  14. 11Floor Planning, Layout, Routing Guidelines, Board Layers and Simulation
    1. 11.1 Escape Routing for PCB Design
    2. 11.2 LPDDR4 Design and Layout Guidelines
    3. 11.3 High-Speed Differential Signals Routing Guidelines
    4. 11.4 Board Layer Count and Stack-up
      1. 11.4.1 Simulation Recommendations
    5. 11.5 Reference for Steps to be Followed for Running Simulation
  15. 12Custom Board Assembly and Testing
    1. 12.1 Guidelines and Board Bring-up Tips
  16. 13Device Handling and Assembly
    1. 13.1 Soldering Recommendations
      1. 13.1.1 Additional References
  17. 14References
    1. 14.1 AM62A7 / AM62A3 / AM62A7-Q1 / AM62A3-Q1
    2. 14.2 AM62D-Q1
    3. 14.3 Common
  18. 15Terminology
  19. 16Revision History

Resetting the Attached Devices

Using an ANDing logic to reset the attached devices as applicable (on-board media and data storage devices, and other peripherals) is recommended. Processor general purpose input/output (GPIO) pin is connected to one of the AND gate input with provision for 0Ω to isolate the GPIO input for testing or debug. Processor IO buffers are off during reset. The recommendation is to place a pullup near to the AND gate input to prevent the AND gate input from floating and enabling the reset logic controlled by the processor IO during power-up. Main Domain POR (cold reset) status output (PORz_OUT) or Main Domain warm reset status output (RESETSTATz) signal can be connected as the other input to the AND gate. Make sure the processor IO supply and the pullup supply used near to the AND logic input are sourced from the same power source.

The choice of reset status output is application dependent. Make sure the attached device reset inputs are pulled as per the device recommendations.

In case an ANDing logic is not used and the processor main domain warm reset status output (RESETSTATz) is used to reset the attached device, match the IO voltage level of the attached device and RESETSTATz. A level translator is recommended to match the IO voltage level.

The recommendation is to provision for a software enabled (controlled) power switch (load switch) that sources the SD card power supply (VDD). A fixed 3.3V supply (IO supply connected to the processor) is connected as an input to the power switch.

Use of power switch allows power cycling of the SD card (since resetting the power switch is the only way to reset the SD card) and resetting the SD card to the default state.

For more information on implementing reset logic for the attached devices and power switch enable logic for SD card, refer the Starter Kit SK-AM62A-LP or AUDIO-AM62D-EVM schematics.