SPRUIG8J
January 2018 – March 2024
1
Read This First
About This Manual
Notational Conventions
Related Documentation
Related Documentation From Texas Instruments
Trademarks
1
Introduction to the Software Development Tools
1.1
Software Development Tools Overview
1.2
Compiler Interface
1.3
ANSI/ISO Standard
1.4
Output Files
2
Getting Started with the Code Generation Tools
2.1
How Code Composer Studio Projects Use the Compiler
2.2
Compiling from the Command Line
3
Using the C/C++ Compiler
3.1
About the Compiler
3.2
Invoking the C/C++ Compiler
3.3
Changing the Compiler's Behavior with Options
3.3.1
Linker Options
3.3.2
Frequently Used Options
3.3.3
Miscellaneous Useful Options
3.3.4
Run-Time Model Options
3.3.5
Selecting Target CPU Version (--silicon_version Option)
3.3.6
Symbolic Debugging and Profiling Options
3.3.7
Specifying Filenames
3.3.8
Changing How the Compiler Interprets Filenames
3.3.9
Changing How the Compiler Processes C Files
3.3.10
Changing How the Compiler Interprets and Names Extensions
3.3.11
Specifying Directories
3.4
Controlling the Compiler Through Environment Variables
3.4.1
Setting Default Compiler Options (C7X_C_OPTION)
3.4.2
Naming One or More Alternate Directories (C7X_C_DIR)
3.5
Controlling the Preprocessor
3.5.1
Predefined Macro Names
3.5.2
The Search Path for #include Files
3.5.2.1
Adding a Directory to the #include File Search Path (--include_path Option)
3.5.3
Support for the #warning and #warn Directives
3.5.4
Generating a Preprocessed Listing File (--preproc_only Option)
3.5.5
Continuing Compilation After Preprocessing (--preproc_with_compile Option)
3.5.6
Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
3.5.7
Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)
3.5.8
Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
3.5.9
Generating a List of Files Included with #include (--preproc_includes Option)
3.5.10
Generating a List of Macros in a File (--preproc_macros Option)
3.6
Passing Arguments to main()
3.7
Understanding Diagnostic Messages
3.7.1
Controlling Diagnostic Messages
3.7.2
How You Can Use Diagnostic Suppression Options
3.8
Other Messages
3.9
Generating a Raw Listing File (--gen_preprocessor_listing Option)
3.10
Using Inline Function Expansion
3.10.1
Inlining Intrinsic Operators
3.10.2
Inlining Restrictions
3.10.3
Unguarded Definition-Controlled Inlining
3.10.3.1
Using the Inline Keyword
3.10.4
Guarded Inlining and the _INLINE Preprocessor Symbol
3.10.4.1
Header File string.h
3.10.4.2
Library Definition File
3.11
Using Interlist
3.12
About the Application Binary Interface
3.13
Enabling Entry Hook and Exit Hook Functions
4
Optimizing Your Code
4.1
Invoking Optimization
4.2
Controlling Code Size Versus Speed
4.3
Performing File-Level Optimization (--opt_level=3 option)
4.3.1
Creating an Optimization Information File (--gen_opt_info Option)
4.4
Program-Level Optimization (--program_level_compile and --opt_level=3 options)
4.4.1
Controlling Program-Level Optimization (--call_assumptions Option)
4.5
Automatic Inline Expansion (--auto_inline Option)
4.6
Link-Time Optimization (--opt_level=4 Option)
4.6.1
Option Handling
4.6.2
Incompatible Types
4.7
Optimizing Software Pipelining
4.7.1
Turn Off Software Pipelining (--disable_software_pipeline Option)
4.7.2
Software Pipelining Information
4.7.2.1
Software Pipelining Information
4.7.2.2
Software Pipelining Information Terms
4.7.2.3
Loop Disqualified for Software Pipelining Messages
4.7.2.4
Pipeline Failure Messages
4.7.2.5
Register Usage Table Generated by the --debug_software_pipeline Option
4.7.3
Collapsing Prologs and Epilogs for Improved Performance and Code Size
4.7.3.1
Speculative Execution
4.8
Redundant Loops
4.9
Indicating Whether Certain Aliasing Techniques Are Used
4.9.1
Use the --aliased_variables Option When Certain Aliases are Used
4.10
Prevent Reordering of Associative Floating-Point Operations
4.11
Using Performance Advice to Optimize Code
4.11.1
Advice #35000: Use restrict to improve loop performance
4.12
Using the Interlist Feature With Optimization
4.13
Debugging and Profiling Optimized Code
4.13.1
Profiling Optimized Code
4.14
What Kind of Optimization Is Being Performed?
4.14.1
Cost-Based Register Allocation
4.14.2
Alias Disambiguation
4.14.3
Branch Optimizations and Control-Flow Simplification
4.14.4
Data Flow Optimizations
4.14.5
Expression Simplification
4.14.6
Inline Expansion of Functions
4.14.7
Function Symbol Aliasing
4.14.8
Induction Variables and Strength Reduction
4.14.9
Loop-Invariant Code Motion
4.14.10
Loop Rotation
4.14.11
Loop Collapsing and Loop Coalescing
4.14.12
Unroll-and-jam
4.14.13
Vectorization (SIMD)
4.14.14
Instruction Scheduling
4.14.15
Register Variables
4.14.16
Register Tracking/Targeting
4.14.17
Software Pipelining
4.15
Streaming Engine and Streaming Address Generator
4.15.1
Streaming Engine Overview
4.15.2
Theory of Operation for Streaming Engines and Streaming Address Generators
4.15.3
Streaming Address Generator Overview
4.15.4
Advantages of Using Streaming Engines and Streaming Address Generators
4.15.5
Interface for Streaming Engine and Streaming Address Generator
4.15.6
Parameter Template Configuration
4.15.7
Using the Streaming Engine
4.15.7.1
Hard-Coded Intrinsic Operands with the Streaming Engine
4.15.8
Using the Streaming Address Generator
4.15.8.1
Vector Predication for Streaming Address Generators
4.15.8.2
Predicated vs. Unpredicated Streaming Address Stores and Loads
4.15.9
Automatic Use of Streaming Engine and Streaming Address Generator (--auto_stream Option)
4.15.9.1
Correctness of Automatic Use of SE and SA
4.15.9.2
Tuning Automatic Use of SE and SA
4.16
Nested Loop Controller (NLC)
4.16.1
Obstacles That May Inhibit Use of NLC
5
C/C++ Language Implementation
5.1
Characteristics of C7000 C
5.1.1
Implementation-Defined Behavior
5.2
Characteristics of C7000 C++
5.3
Data Types
5.3.1
Size of Enum Types
5.3.2
Vector Data Types
5.4
File Encodings and Character Sets
5.5
Keywords
5.5.1
The complex Keyword
5.5.2
The const Keyword
5.5.3
The __cregister Keyword
5.5.3.1
Define and Use Control Registers
5.5.3.2
Evaluating Flags in the Flag Status Register (FSR) After Floating Point Operations
5.5.4
The restrict Keyword
5.5.5
The volatile Keyword
5.6
C++ Exception Handling
5.7
Register Variables and Parameters
5.8
Pragma Directives
5.8.1
The CALLS Pragma
5.8.2
The CLINK Pragma
5.8.3
The COALESCE_LOOP Pragma
5.8.4
The CODE_ALIGN Pragma
5.8.5
The CODE_SECTION Pragma
5.8.6
The DATA_ALIGN Pragma
5.8.7
The DATA_MEM_BANK Pragma
5.8.7.1
Using the DATA_MEM_BANK Pragma
5.8.8
The DATA_SECTION Pragma
5.8.8.1
Using the DATA_SECTION Pragma C Source File
5.8.8.2
Using the DATA_SECTION Pragma C++ Source File
5.8.9
The Diagnostic Message Pragmas
5.8.10
The FORCEINLINE Pragma
5.8.11
The FORCEINLINE_RECURSIVE Pragma
5.8.12
The FUNC_ALWAYS_INLINE Pragma
5.8.13
The FUNC_CANNOT_INLINE Pragma
5.8.14
The FUNC_EXT_CALLED Pragma
5.8.15
The FUNC_IS_PURE Pragma
5.8.16
The FUNC_IS_SYSTEM Pragma
5.8.17
The FUNC_NEVER_RETURNS Pragma
5.8.18
The FUNC_NO_GLOBAL_ASG Pragma
5.8.19
The FUNC_NO_IND_ASG Pragma
5.8.20
The FUNCTION_OPTIONS Pragma
5.8.21
The INTERRUPT Pragma
5.8.22
The LOCATION Pragma
5.8.23
The MUST_ITERATE Pragma
5.8.23.1
The MUST_ITERATE Pragma Syntax
5.8.23.2
Using MUST_ITERATE to Expand Compiler Knowledge of Loops
5.8.24
The NOINIT and PERSISTENT Pragmas
5.8.25
The NOINLINE Pragma
5.8.26
The NO_COALESCE_LOOP Pragma
5.8.27
The NO_HOOKS Pragma
5.8.28
The once Pragma
5.8.29
The pack Pragma
5.8.30
The PROB_ITERATE Pragma
5.8.31
The RETAIN Pragma
5.8.32
The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
5.8.33
The STRUCT_ALIGN Pragma
5.8.34
The UNROLL Pragma
5.8.35
The WEAK Pragma
5.9
The _Pragma Operator
5.10
Application Binary Interface
5.11
Object File Symbol Naming Conventions (Linknames)
5.12
Changing the ANSI/ISO C/C++ Language Mode
5.12.1
C99 Support (--c99)
5.12.2
C11 Support (--c11)
5.12.3
Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)
5.13
GNU and Clang Language Extensions
5.13.1
Extensions
5.13.2
Function Attributes
5.13.3
For Loop Attributes
5.13.4
Variable Attributes
5.13.5
Type Attributes
5.13.6
Built-In Functions
5.14
Operations and Functions for Vector Data Types
5.14.1
Vector Literals and Concatenation
5.14.2
Unary and Binary Operators for Vectors
5.14.3
Ternary Operators for Vectors (?:)
5.14.4
Swizzle Operators for Vectors
5.14.5
Unsupported Vector Comparison Operators
5.14.6
Conversion Functions for Vectors
5.14.7
Re-Interpretation Functions for Vectors
5.14.8
Vector Predicate Type
5.14.8.1
Constructing a Vector Predicate Type
5.14.8.2
Using a Vector Predicate Type
5.14.8.3
Boolean Vector Types
5.15
C7000 Intrinsics
5.15.1
High-Level Overloaded Intrinsics
5.15.2
Intrinsics Defined for Special Load and Store Instructions
5.15.3
Direct-Mapped Intrinsics
5.15.4
Lookup Table and Histogram Intrinsics
5.15.5
Matrix-Multiply Accelerator (MMA) Intrinsics
5.15.6
Legacy Intrinsics
5.16
C7000 Scalable Vector Programming
6
Run-Time Environment
6.1
Memory
6.1.1
Sections
6.1.2
C/C++ System Stack
6.1.3
Dynamic Memory Allocation
6.2
Object Representation
6.2.1
Data Type Storage
6.2.1.1
char and short Data Types (signed and unsigned)
6.2.1.2
enum, int, and long Data Types (signed and unsigned)
6.2.1.3
long Data Types (signed and unsigned)
6.2.1.4
float Data Type
6.2.1.5
double and long double Data Types
6.2.1.6
Pointer to Data Member Types
6.2.1.7
Pointer to Member Function Types
6.2.1.8
Structures and Arrays
6.2.2
Bit Fields
6.2.3
Character String Constants
6.3
Register Conventions
6.4
Function Structure and Calling Conventions
6.4.1
How a Function Makes a Call
6.4.2
How a Called Function Responds
6.4.3
Accessing Arguments and Local Variables
6.5
Accessing Linker Symbols in C and C++
6.6
Run-Time-Support Arithmetic Routines
6.7
System Initialization
6.7.1
Boot Hook Functions for System Pre-Initialization
6.7.2
Automatic Initialization of Variables
6.7.2.1
Zero Initializing Variables
6.7.2.2
Direct Initialization
6.7.2.3
Autoinitialization of Variables at Run Time
6.7.2.4
Autoinitialization Tables
6.7.2.4.1
Length Followed by Data Format
6.7.2.4.2
Zero Initialization Format
6.7.2.4.3
Run Length Encoded (RLE) Format
6.7.2.4.4
Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format
6.7.2.5
Initialization of Variables at Load Time
6.7.2.6
Global Constructors
7
Using Run-Time-Support Functions and Building Libraries
7.1
C and C++ Run-Time Support Libraries
7.1.1
Linking Code With the Object Library
7.1.2
Header Files
7.1.3
Modifying a Library Function
7.1.4
Support for String Handling
7.1.5
Minimal Support for Internationalization
7.1.6
Support for Time and Clock Functions
7.1.7
Allowable Number of Open Files
7.1.8
Library Naming Conventions
7.2
The C I/O Functions
7.2.1
High-Level I/O Functions
7.2.1.1
Formatting and the Format Conversion Buffer
7.2.2
Overview of Low-Level I/O Implementation
open
close
read
write
lseek
unlink
rename
7.2.3
Device-Driver Level I/O Functions
DEV_open
DEV_close
DEV_read
DEV_write
DEV_lseek
DEV_unlink
DEV_rename
7.2.4
Adding a User-Defined Device Driver for C I/O
7.2.4.1
Mapping Default Streams to Device
7.2.5
The device Prefix
add_device
291
7.2.5.1
Program for C I/O Device
7.3
Handling Reentrancy (_register_lock() and _register_unlock() Functions)
7.4
Library-Build Process
7.4.1
Required Non-Texas Instruments Software
7.4.2
Using the Library-Build Process
7.4.2.1
Automatic Standard Library Rebuilding by the Linker
7.4.2.2
Invoking mklib Manually
7.4.2.2.1
Building Standard Libraries
7.4.2.2.2
Shared or Read-Only Library Directory
7.4.2.2.3
Building Libraries With Custom Options
7.4.2.2.4
The mklib Program Option Summary
7.4.3
Extending mklib
7.4.3.1
Underlying Mechanism
7.4.3.2
Libraries From Other Vendors
8
Introduction to Object Modules
8.1
Object File Format Specifications
8.2
Executable Object Files
8.3
Introduction to Sections
8.3.1
Special Section Names
8.4
How the Linker Handles Sections
8.4.1
Combining Input Sections
8.4.2
Placing Sections
8.5
Symbols
8.5.1
Local Symbols
8.5.2
Weak Symbols
8.6
Loading a Program
9
Program Loading and Running
9.1
Loading
9.2
Entry Point
9.3
Run-Time Initialization
9.3.1
The _c_int00 Function
9.3.2
RAM Model vs. ROM Model
9.3.2.1
Autoinitializing Variables at Run Time (--rom_model)
9.3.2.2
Initializing Variables at Load Time (--ram_model)
9.3.2.3
The --rom_model and --ram_model Linker Options
9.3.3
About Linker-Generated Copy Tables
9.3.3.1
BINIT
9.3.3.2
CINIT
9.4
Arguments to main
9.5
Run-Time Relocation
9.6
Additional Information
10
Archiver Description
10.1
Archiver Overview
10.2
The Archiver's Role in the Software Development Flow
10.3
Invoking the Archiver
10.4
Archiver Examples
10.5
Library Information Archiver Description
10.5.1
Invoking the Library Information Archiver
10.5.2
Library Information Archiver Example
10.5.3
Listing the Contents of an Index Library
10.5.4
Requirements
11
Linking C/C++ Code
11.1
Invoking the Linker Through the Compiler (-z Option)
11.1.1
Invoking the Linker Separately
11.1.2
Invoking the Linker as Part of the Compile Step
11.1.3
Disabling the Linker (--compile_only Compiler Option)
11.2
Linker Code Optimizations
11.2.1
Conditional Linking
11.2.2
Generating Function Subsections (--gen_func_subsections Compiler Option)
11.2.3
Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)
11.3
Controlling the Linking Process
11.3.1
Including the Run-Time-Support Library
11.3.1.1
Automatic Run-Time-Support Library Selection
11.3.1.1.1
Using the --issue_remarks Option
11.3.1.2
Manual Run-Time-Support Library Selection
11.3.1.3
Library Order for Searching for Symbols
11.3.2
Run-Time Initialization
11.3.3
Global Object Constructors
11.3.4
Specifying the Type of Global Variable Initialization
11.3.5
Specifying Where to Allocate Sections in Memory
11.3.6
A Sample Linker Command File
12
Linker Description
12.1
Linker Overview
12.2
The Linker's Role in the Software Development Flow
12.3
Invoking the Linker
12.4
Linker Options
12.4.1
Wildcards in File, Section, and Symbol Patterns
12.4.2
Specifying C/C++ Symbols with Linker Options
12.4.3
Relocation Capabilities (--absolute_exe and --relocatable Options)
12.4.3.1
Producing an Absolute Output Module (--absolute_exe option)
12.4.3.2
Producing a Relocatable Output Module (--relocatable option)
12.4.4
Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
12.4.5
Compression (--cinit_compression and --copy_compression Option)
12.4.6
Compress DWARF Information (--compress_dwarf Option)
12.4.7
Control Linker Diagnostics
12.4.8
Automatic Library Selection (--disable_auto_rts Option)
12.4.9
Do Not Remove Unused Sections (--unused_section_elimination Option)
12.4.10
Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)
12.4.11
Define an Entry Point (--entry_point Option)
12.4.12
Set Default Fill Value (--fill_value Option)
12.4.13
Define Heap Size (--heap_size Option)
12.4.14
Hiding Symbols
12.4.15
Alter the Library Search Algorithm (--library, --search_path, and C7X_C_DIR )
12.4.15.1
Name an Alternate Library Directory (--search_path Option)
12.4.15.2
Name an Alternate Library Directory ( C7X_C_DIR Environment Variable)
12.4.15.3
Exhaustively Read and Search Libraries (--reread_libs and --priority Options)
12.4.16
Change Symbol Localization
12.4.16.1
Make All Global Symbols Static (--make_static Option)
12.4.17
Create a Map File (--map_file Option)
12.4.18
Manage Map File Contents (--mapfile_contents Option)
12.4.19
Disable Name Demangling (--no_demangle)
12.4.20
Merging of Symbolic Debugging Information
12.4.21
Strip Symbolic Information (--no_symtable Option)
12.4.22
Name an Output Module (--output_file Option)
12.4.23
Prioritizing Function Placement (--preferred_order Option)
12.4.24
C Language Options (--ram_model and --rom_model Options)
12.4.25
Retain Discarded Sections (--retain Option)
12.4.26
Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
12.4.27
Define Stack Size (--stack_size Option)
12.4.28
Mapping of Symbols (--symbol_map Option)
12.4.29
Generate Far Call Trampolines (--trampolines Option)
12.4.29.1
Advantages and Disadvantages of Using Trampolines
12.4.29.2
Minimizing the Number of Trampolines Required (--minimize_trampolines Option)
12.4.29.3
Carrying Trampolines From Load Space to Run Space
12.4.30
Introduce an Unresolved Symbol (--undef_sym Option)
12.4.31
Display a Message When an Undefined Output Section Is Created (--warn_sections)
12.4.32
Generate XML Link Information File (--xml_link_info Option)
12.4.33
Zero Initialization (--zero_init Option)
12.5
Linker Command Files
12.5.1
Reserved Names in Linker Command Files
12.5.2
Constants in Linker Command Files
12.5.3
Accessing Files and Libraries from a Linker Command File
12.5.4
The MEMORY Directive
12.5.4.1
Default Memory Model
12.5.4.2
MEMORY Directive Syntax
12.5.4.3
Expressions and Address Operators
12.5.5
The SECTIONS Directive
12.5.5.1
SECTIONS Directive Syntax
12.5.5.2
Section Allocation and Placement
12.5.5.2.1
Binding
12.5.5.2.2
Named Memory
12.5.5.2.3
Controlling Placement Using The HIGH Location Specifier
12.5.5.2.3.1
Linker Placement With the HIGH Specifier
425
12.5.5.2.3.2
Linker Placement Without HIGH Specifier
12.5.5.2.4
Alignment and Blocking
12.5.5.2.5
Alignment With Padding
12.5.5.3
Specifying Input Sections
12.5.5.3.1
The Most Common Method of Specifying Section Contents
431
12.5.5.4
Using Multi-Level Subsections
12.5.5.5
Specifying Library or Archive Members as Input to Output Sections
12.5.5.5.1
Archive Members to Output Sections
435
12.5.5.6
Allocation Using Multiple Memory Ranges
12.5.5.7
Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges
12.5.6
Placing a Section at Different Load and Run Addresses
12.5.6.1
Specifying Load and Run Addresses
440
12.5.7
Using GROUP and UNION Statements
12.5.7.1
Grouping Output Sections Together
12.5.7.2
Overlaying Sections With the UNION Statement
12.5.7.3
Using Memory for Multiple Purposes
12.5.7.4
Nesting UNIONs and GROUPs
12.5.7.5
Checking the Consistency of Allocators
12.5.7.6
Naming UNIONs and GROUPs
12.5.8
Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)
12.5.9
Assigning Symbols at Link Time
12.5.9.1
Syntax of Assignment Statements
12.5.9.2
Assigning the SPC to a Symbol
12.5.9.3
Assignment Expressions
12.5.9.4
Symbols Automatically Defined by the Linker
12.5.9.5
Assigning Exact Start, End, and Size Values of a Section to a Symbol
12.5.9.6
Why the Dot Operator Does Not Always Work
12.5.9.7
Address and Dimension Operators
12.5.9.7.1
Input Items
12.5.9.7.2
Output Section
12.5.9.7.3
GROUPs
12.5.9.7.4
UNIONs
12.5.9.8
LAST Operator
12.5.10
Creating and Filling Holes
12.5.10.1
Initialized and Uninitialized Sections
12.5.10.2
Creating Holes
12.5.10.3
Filling Holes
12.5.10.4
Explicit Initialization of Uninitialized Sections
12.6
Linker Symbols
12.6.1
Linker-Defined Functions and Arrays
12.6.2
Linker-Defined Integer Values
12.6.3
Linker-Defined Addresses
12.6.4
More About the _symval Operator
12.6.5
Using _symval, PC-Relative Addressing, and Far Data
12.6.6
Weak Symbols
12.6.6.1
Weak Symbol References
12.6.6.2
Weak Symbol Definitions
12.6.7
Resolving Symbols with Object Libraries
12.7
Default Placement Algorithm
12.7.1
How the Allocation Algorithm Creates Output Sections
12.7.2
Reducing Memory Fragmentation
12.8
Using Linker-Generated Copy Tables
12.8.1
Using Copy Tables for Boot Loading
12.8.2
Using Built-in Link Operators in Copy Tables
12.8.3
Overlay Management Example
12.8.4
Generating Copy Tables With the table() Operator
12.8.4.1
The table() Operator
12.8.4.2
Boot-Time Copy Tables
12.8.4.3
Using the table() Operator to Manage Object Components
12.8.4.4
Linker-Generated Copy Table Sections and Symbols
12.8.4.5
Splitting Object Components and Overlay Management
12.8.5
Compression
12.8.5.1
Compressed Copy Table Format
12.8.5.2
Compressed Section Representation in the Object File
12.8.5.3
Compressed Data Layout
12.8.5.4
Run-Time Decompression
12.8.5.5
Compression Algorithms
496
12.8.6
Copy Table Contents
12.8.7
General Purpose Copy Routine
12.9
Partial (Incremental) Linking
12.10
Linking C/C++ Code
12.10.1
Run-Time Initialization
12.10.2
Object Libraries and Run-Time Support
12.10.3
Setting the Size of the Stack and Heap Sections
12.10.4
Initializing and AutoInitialzing Variables at Run Time
12.10.5
Constraints Due to CMMU Configuration
12.11
Linker Example
13
Object File Utilities
13.1
Invoking the Object File Display Utility
13.2
Invoking the Disassembler
13.3
Invoking the Name Utility
13.4
Invoking the Strip Utility
14
C++ Name Demangler
14.1
Invoking the C++ Name Demangler
14.2
Sample Usage of the C++ Name Demangler
A XML Link Information File Description
A.1 XML Information File Element Types
A.2 Document Elements
A.2.1 Header Elements
A.2.2 Input File List
A.2.3 Object Component List
A.2.4 Logical Group List
A.2.5 Placement Map
A.2.6 Far Call Trampoline List
A.2.7 Symbol Table
B Unsupported Tools and Features
B.1 List of Unsupported Tools and Features
C Glossary
528
D Revision History
Example7-2
illustrates adding and using a device for C I/O: