SPRUII0F May   2019  – June 2024 TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. ► C28x SYSTEM RESOURCES
    1. 1.1 Technical Reference Manual Overview
  4. C2000™ Microcontrollers Software Support
    1. 2.1 Introduction
    2. 2.2 C2000Ware Structure
    3. 2.3 Documentation
    4. 2.4 Devices
    5. 2.5 Libraries
    6. 2.6 Code Composer Studio™ Integrated Development Environment (IDE)
    7. 2.7 SysConfig and PinMUX Tool
  5. C28x System Control and Interrupts
    1. 3.1  C28x System Control Introduction
      1. 3.1.1 SYSCTL Related Collateral
    2. 3.2  System Control Functional Description
      1. 3.2.1 Device Identification
      2. 3.2.2 Device Configuration Registers
    3. 3.3  Resets
      1. 3.3.1  Reset Sources
      2. 3.3.2  External Reset (XRSn)
      3. 3.3.3  Simulate External Reset
      4. 3.3.4  Power-On Reset (POR)
      5. 3.3.5  Debugger Reset (SYSRS)
      6. 3.3.6  Simulate CPU1 Reset
      7. 3.3.7  Watchdog Reset (WDRS)
      8. 3.3.8  NMI Watchdog Reset (NMIWDRS)
      9. 3.3.9  Secure Code Copy Reset (SCCRESET)
      10. 3.3.10 ESC Reset Output
      11. 3.3.11 Test Reset (TRST)
    4. 3.4  Peripheral Interrupts
      1. 3.4.1 Interrupt Concepts
      2. 3.4.2 Interrupt Architecture
        1. 3.4.2.1 Peripheral Stage
        2. 3.4.2.2 PIE Stage
        3. 3.4.2.3 CPU Stage
        4. 3.4.2.4 Dual-CPU Interrupt Handling
      3. 3.4.3 Interrupt Entry Sequence
      4. 3.4.4 Configuring and Using Interrupts
        1. 3.4.4.1 Enabling Interrupts
        2. 3.4.4.2 Handling Interrupts
        3. 3.4.4.3 Disabling Interrupts
        4. 3.4.4.4 Nesting Interrupts
      5. 3.4.5 PIE Channel Mapping
        1. 3.4.5.1 PIE Interrupt Priority
          1. 3.4.5.1.1 Channel Priority
          2. 3.4.5.1.2 Group Priority
      6. 3.4.6 System Error and CM Status Interrupts
      7. 3.4.7 Vector Tables
    5. 3.5  Exceptions and Non-Maskable Interrupts
      1. 3.5.1 Configuring and Using NMIs
      2. 3.5.2 Emulation Considerations
      3. 3.5.3 NMI Sources
        1. 3.5.3.1  Missing Clock Detection
        2. 3.5.3.2  RAM Uncorrectable Error
        3. 3.5.3.3  Flash Uncorrectable ECC Error
        4. 3.5.3.4  ROM Uncorrectable Error
        5. 3.5.3.5  NMI Vector Fetch Mismatch
        6. 3.5.3.6  CPU2 Watchdog or NMI Watchdog Reset
        7. 3.5.3.7  CM NMI Watchdog Reset
        8. 3.5.3.8  EtherCAT Reset out
        9. 3.5.3.9  CRC Fail
        10. 3.5.3.10 ERAD NMI
      4. 3.5.4 Illegal Instruction Trap (ITRAP)
    6. 3.6  Safety Features
      1. 3.6.1 Write Protection on Registers
        1. 3.6.1.1 LOCK Protection on System Configuration Registers
        2. 3.6.1.2 EALLOW Protection
      2. 3.6.2 CPU1 and CPU2 ePIE Vector Address Validity Check
      3. 3.6.3 NMIWDs
      4. 3.6.4 ECC and Parity Enabled RAMs, Shared RAMs Protection
      5. 3.6.5 ECC Enabled Flash Memory
      6. 3.6.6 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1 Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.7.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.7.1.3 External Oscillator (XTAL)
        4. 3.7.1.4 Auxiliary Clock Input (AUXCLKIN)
      2. 3.7.2 Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
        3. 3.7.2.3 Auxiliary Oscillator Clock (AUXOSCCLK)
        4. 3.7.2.4 Auxiliary PLL Output Clock (AUXPLLRAWCLK)
      3. 3.7.3 Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK and PERx.SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 USB Auxiliary Clock (AUXPLLCLK)
        6. 3.7.3.6 CAN Bit Clock
        7. 3.7.3.7 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4 External Clock Output (XCLKOUT)
      5. 3.7.5 Clock Connectivity
      6. 3.7.6 PLL/AUXPLL
        1. 3.7.6.1 Choosing PLL Settings
        2. 3.7.6.2 System Clock Setup
        3. 3.7.6.3 USB Auxiliary Clock Setup
        4. 3.7.6.4 SYS PLL / AUX PLL Bypass
      7. 3.7.7 Clock (OSCCLK) Failure Detection
        1. 3.7.7.1 Missing Clock Detection Logic
    8. 3.8  Clock Configuration Semaphore
    9. 3.9  32-Bit CPU Timers 0/1/2
    10. 3.10 Watchdog Timers
      1. 3.10.1 Servicing the Watchdog Timer
      2. 3.10.2 Minimum Window Check
      3. 3.10.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.10.4 Watchdog Operation in Low-Power Modes
      5. 3.10.5 Emulation Considerations
    11. 3.11 Low-Power Modes
      1. 3.11.1 IDLE
      2. 3.11.2 STANDBY
    12. 3.12 Memory Controller Module
      1. 3.12.1 Functional Description
        1. 3.12.1.1  Dedicated RAM (Dx RAM)
        2. 3.12.1.2  Local Shared RAM (LSx RAM)
        3. 3.12.1.3  Global Shared RAM (GSx RAM)
        4. 3.12.1.4  CPU Message RAM (CPU MSG RAM)
        5. 3.12.1.5  CLA Message RAM (CLA MSGRAM)
        6. 3.12.1.6  CLA-DMA MSG RAM
        7. 3.12.1.7  Access Arbitration
        8. 3.12.1.8  Access Protection
          1. 3.12.1.8.1 CPU Fetch Protection
          2. 3.12.1.8.2 CPU Write Protection
          3. 3.12.1.8.3 CPU Read Protection
          4. 3.12.1.8.4 CLA Fetch Protection
          5. 3.12.1.8.5 CLA Write Protection
          6. 3.12.1.8.6 CLA Read Protection
          7. 3.12.1.8.7 DMA Write Protection
        9. 3.12.1.9  Memory Error Detection, Correction and Error Handling
          1. 3.12.1.9.1 Error Detection and Correction
          2. 3.12.1.9.2 Error Handling
        10. 3.12.1.10 Application Test Hooks for Error Detection and Correction
        11. 3.12.1.11 ROM Test
        12. 3.12.1.12 RAM Initialization
    13. 3.13 JTAG
      1. 3.13.1 JTAG Noise and TAP_STATUS
    14. 3.14 System Control Register Configuration Restrictions
    15. 3.15 Software
      1. 3.15.1 SYSCTL Examples
        1. 3.15.1.1 Missing clock detection (MCD)
        2. 3.15.1.2 XCLKOUT (External Clock Output) Configuration
      2. 3.15.2 MEMCFG Examples
        1. 3.15.2.1 Correctable & Uncorrectable Memory Error Handling
        2. 3.15.2.2 Shared RAM Management (CPU1) - C28X_DUAL
        3. 3.15.2.3 Shared RAM Management (CPU2) - C28X_DUAL
        4. 3.15.2.4 Demonstrate memconfig diagnostics and error handling. - CM
        5. 3.15.2.5 Shared RAM Management (CPU1) - C28X_DUAL
        6. 3.15.2.6 Shared RAM Management (CPU2) - C28X_DUAL
      3. 3.15.3 NMI Examples
        1. 3.15.3.1 NMI handling - C28X_DUAL
        2. 3.15.3.2 Watchdog Reset - C28X_DUAL
        3. 3.15.3.3 NMI handling - C28X_DUAL
        4. 3.15.3.4 Watchdog Reset - C28X_DUAL
      4. 3.15.4 TIMER Examples
        1. 3.15.4.1 CPU Timers
        2. 3.15.4.2 CPU Timers - CM
        3. 3.15.4.3 CPU Timers
      5. 3.15.5 WATCHDOG Examples
        1. 3.15.5.1 Watchdog
        2. 3.15.5.2 Windowed watchdog expiry with NMI handling - CM
    16. 3.16 System Control Registers
      1. 3.16.1  SYSCTRL Base Address Table (C28)
      2. 3.16.2  ACCESS_PROTECTION_REGS Registers
      3. 3.16.3  CLK_CFG_REGS Registers
      4. 3.16.4  CM_CONF_REGS Registers
      5. 3.16.5  CPU_SYS_REGS Registers
      6. 3.16.6  CPU_ID_REGS Registers
      7. 3.16.7  CPU1_PERIPH_AC_REGS Registers
      8. 3.16.8  CPUTIMER_REGS Registers
      9. 3.16.9  DEV_CFG_REGS Registers
      10. 3.16.10 DMA_CLA_SRC_SEL_REGS Registers
      11. 3.16.11 MEM_CFG_REGS Registers
      12. 3.16.12 MEMORY_ERROR_REGS Registers
      13. 3.16.13 NMI_INTRUPT_REGS Registers
      14. 3.16.14 PIE_CTRL_REGS Registers
      15. 3.16.15 ROM_PREFETCH_REGS Registers
      16. 3.16.16 ROM_WAIT_STATE_REGS Registers
      17. 3.16.17 SYNC_SOC_REGS Registers
      18. 3.16.18 SYS_STATUS_REGS Registers
      19. 3.16.19 TEST_ERROR_REGS Registers
      20. 3.16.20 UID_REGS Registers
      21. 3.16.21 WD_REGS Registers
      22. 3.16.22 XINT_REGS Registers
      23. 3.16.23 Register to Driverlib Function Mapping
        1. 3.16.23.1 ASYSCTL Registers to Driverlib Functions
        2. 3.16.23.2 CPUTIMER Registers to Driverlib Functions
        3. 3.16.23.3 DCSM Registers to Driverlib Functions
        4. 3.16.23.4 MEMCFG Registers to Driverlib Functions
        5. 3.16.23.5 NMI Registers to Driverlib Functions
        6. 3.16.23.6 PIE Registers to Driverlib Functions
        7. 3.16.23.7 SYSCTL Registers to Driverlib Functions
        8. 3.16.23.8 WWD Registers to Driverlib Functions
        9. 3.16.23.9 XINT Registers to Driverlib Functions
  6. C28x Processor
    1. 4.1 Introduction
    2. 4.2 C28X Related Collateral
    3. 4.3 Features
    4. 4.4 Floating-Point Unit
    5. 4.5 Trigonometric Math Unit (TMU)
    6. 4.6 VCRC Unit
  7. ROM Code and Peripheral Booting
    1. 5.1 Introduction
      1. 5.1.1 ROM Related Collateral
    2. 5.2 Device Boot Sequence
    3. 5.3 Device Boot Modes
    4. 5.4 Device Boot Configurations
      1. 5.4.1 Configuring Boot Mode Pins for CPU1
      2. 5.4.2 Configuring Boot Mode Table Options for CPU1
      3. 5.4.3 Boot Mode Example Use Cases
        1. 5.4.3.1 Zero Boot Mode Select Pins
        2. 5.4.3.2 One Boot Mode Select Pin
        3. 5.4.3.3 Three Boot Mode Select Pins
    5. 5.5 Device Boot Flow Diagrams
      1. 5.5.1 CPU1 Boot Flow
      2. 5.5.2 CPU2 Boot Flow
      3. 5.5.3 Connectivity Manager (CM) Boot Flow
    6. 5.6 Device Reset and Exception Handling
      1. 5.6.1 Reset Causes and Handling
      2. 5.6.2 Exceptions and Interrupts Handling
    7. 5.7 Boot ROM Description
      1. 5.7.1  CPU1 Boot ROM Configuration Registers
        1. 5.7.1.1 GPREG2 Usage and MPOST Configuration
      2. 5.7.2  Booting CPU2 and CM
        1. 5.7.2.1 Boot Up Procedure
        2. 5.7.2.2 IPCBOOTMODE Details
        3. 5.7.2.3 Error IPC Command Table
      3. 5.7.3  Entry Points
      4. 5.7.4  Wait Points
      5. 5.7.5  Memory Maps
        1. 5.7.5.1 Boot ROM Memory Maps
        2. 5.7.5.2 CLA Data ROM Memory Maps
        3. 5.7.5.3 Reserved RAM Memory Maps
      6. 5.7.6  ROM Tables
      7. 5.7.7  Boot Modes and Loaders
        1. 5.7.7.1 Boot Modes
          1. 5.7.7.1.1 Wait Boot
          2. 5.7.7.1.2 Flash Boot
          3. 5.7.7.1.3 Secure Flash Boot
            1. 5.7.7.1.3.1 Secure Flash CPU1 Linker File Example
          4. 5.7.7.1.4 RAM Boot
          5. 5.7.7.1.5 User OTP Boot
          6. 5.7.7.1.6 IPC Message Copy to RAM Boot
        2. 5.7.7.2 Bootloaders
          1. 5.7.7.2.1 SCI Boot Mode
          2. 5.7.7.2.2 SPI Boot Mode
          3. 5.7.7.2.3 I2C Boot Mode
          4. 5.7.7.2.4 Parallel Boot Mode
          5. 5.7.7.2.5 CAN Boot Mode
          6. 5.7.7.2.6 USB Boot Mode
      8. 5.7.8  GPIO Assignments for CPU1
      9. 5.7.9  Secure ROM Function APIs
      10. 5.7.10 Clock Initializations
      11. 5.7.11 Boot Status information
        1. 5.7.11.1 CPU1 Booting Status
        2. 5.7.11.2 CPU2 Booting Status
        3. 5.7.11.3 CM Booting Status
        4. 5.7.11.4 Boot Mode and MPOST (Memory Power On Self-Test) Status
      12. 5.7.12 ROM Version
    8. 5.8 Application Notes for Using the Bootloaders
      1. 5.8.1 Boot Data Stream Structure
        1. 5.8.1.1 Bootloader Data Stream Structure
          1. 5.8.1.1.1 Data Stream Structure 8-bit
      2. 5.8.2 The C2000 Hex Utility
        1. 5.8.2.1 HEX2000.exe Command Syntax
    9. 5.9 Software
      1. 5.9.1 BOOT Examples
        1. 5.9.1.1 CM Secure Flash Boot
        2. 5.9.1.2 CPU1 Secure Flash Boot
        3. 5.9.1.3 CPU2 Secure Flash Boot
  8. Dual Code Security Module (DCSM)
    1. 6.1 Introduction
      1. 6.1.1 DCSM Related Collateral
    2. 6.2 Functional Description
      1. 6.2.1 CSM Passwords
      2. 6.2.2 Emulation Code Security Logic (ECSL)
      3. 6.2.3 CPU Secure Logic
      4. 6.2.4 Execute-Only Protection
      5. 6.2.5 Password Lock
      6. 6.2.6 JTAGLOCK
      7. 6.2.7 Link Pointer and Zone Select
      8. 6.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 6.3 Flash and OTP Erase/Program
    4. 6.4 Secure Copy Code
    5. 6.5 SecureCRC
    6. 6.6 CSM Impact on Other On-Chip Resources
    7. 6.7 Incorporating Code Security in User Applications
      1. 6.7.1 Environments That Require Security Unlocking
      2. 6.7.2 CSM Password Match Flow
      3. 6.7.3 C Code Example to Unsecure C28x Zone1
      4. 6.7.4 C Code Example to Resecure C28x Zone1
      5. 6.7.5 Environments That Require ECSL Unlocking
      6. 6.7.6 ECSL Password Match Flow
      7. 6.7.7 ECSL Disable Considerations for any Zone
        1. 6.7.7.1 C Code Example to Disable ECSL for C28x-Zone1
      8. 6.7.8 Device Unique ID
    8. 6.8 Software
      1. 6.8.1 DCSM Examples
        1. 6.8.1.1 Empty DCSM Tool Example
        2. 6.8.1.2 DCSM Memory Access control by master CPU1 - C28X_CM
        3. 6.8.1.3 DCSM Memory Access by CPU2 - C28X_DUAL
        4. 6.8.1.4 DCSM Memory Access control by CPU1 - C28X_DUAL
        5. 6.8.1.5 DCSM Memory partitioning Example
        6. 6.8.1.6 DCSM Memory Access by CM - C28X_CM
    9. 6.9 DCSM Registers
      1. 6.9.1 DCSM Base Address Table (C28)
      2. 6.9.2 CM DCSM Base Address Table (CM)
      3. 6.9.3 DCSM_Z1_REGS Registers
      4. 6.9.4 DCSM_Z2_REGS Registers
      5. 6.9.5 DCSM_COMMON_REGS Registers
      6. 6.9.6 DCSM_Z1_OTP Registers
      7. 6.9.7 DCSM_Z2_OTP Registers
  9. Background CRC-32 (BGCRC)
    1. 7.1 Introduction
      1. 7.1.1 BGCRC Related Collateral
      2. 7.1.2 Features
      3. 7.1.3 Block Diagram
      4. 7.1.4 Memory Wait States and Memory Map
    2. 7.2 Functional Description
      1. 7.2.1 Data Read Unit
      2. 7.2.2 CRC-32 Compute Unit
      3. 7.2.3 CRC Notification Unit
        1. 7.2.3.1 CPU Interrupt, CLA Task and NMI
      4. 7.2.4 Operating Modes
        1. 7.2.4.1 CRC Mode
        2. 7.2.4.2 Scrub Mode
      5. 7.2.5 BGCRC Watchdog
      6. 7.2.6 Hardware and Software Faults Protection
    3. 7.3 Application of the BGCRC
      1. 7.3.1 Software Configuration
      2. 7.3.2 Decision on Error Response Severity
      3. 7.3.3 Decision of Controller for CLA_CRC
      4. 7.3.4 Execution of Time Critical Code from Wait-Stated Memories
      5. 7.3.5 BGCRC Execution
      6. 7.3.6 Debug/Error Response for BGCRC Errors
      7. 7.3.7 BGCRC Golden CRC-32 Value Computation
    4. 7.4 Software
      1. 7.4.1 BGCRC Examples
        1. 7.4.1.1 BGCRC CPU Interrupt Example
        2. 7.4.1.2 BGCRC Example with Watchdog and Lock
        3. 7.4.1.3 CLA-BGCRC Example in CRC mode
        4. 7.4.1.4 CLA-BGCRC Example in Scrub Mode
    5. 7.5 BGCRC Registers
      1. 7.5.1 BGCRC Base Address Table (C28)
      2. 7.5.2 BGCRC_REGS Registers
      3. 7.5.3 BGCRC Registers to Driverlib Functions
  10. Control Law Accelerator (CLA)
    1. 8.1 Introduction
      1. 8.1.1 Features
      2. 8.1.2 CLA Related Collateral
      3. 8.1.3 Block Diagram
    2. 8.2 CLA Interface
      1. 8.2.1 CLA Memory
      2. 8.2.2 CLA Memory Bus
      3. 8.2.3 Shared Peripherals and EALLOW Protection
      4. 8.2.4 CLA Tasks and Interrupt Vectors
      5. 8.2.5 CLA Software Interrupt to CPU
    3. 8.3 CLA, DMA, and CPU Arbitration
      1. 8.3.1 CLA Message RAM
      2. 8.3.2 Peripheral Registers (ePWM, HRPWM, Comparator)
    4. 8.4 CLA Configuration and Debug
      1. 8.4.1 Building a CLA Application
      2. 8.4.2 Typical CLA Initialization Sequence
      3. 8.4.3 Debugging CLA Code
        1. 8.4.3.1 Software Breakpoint Support (MDEBUGSTOP1)
        2. 8.4.3.2 Legacy Breakpoint Support (MDEBUGSTOP)
      4. 8.4.4 CLA Illegal Opcode Behavior
      5. 8.4.5 Resetting the CLA
    5. 8.5 Pipeline
      1. 8.5.1 Pipeline Overview
      2. 8.5.2 CLA Pipeline Alignment
        1. 8.5.2.1 Code Fragment For MBCNDD, MCCNDD, or MRCNDD
        2.       379
        3. 8.5.2.2 Code Fragment for Loading MAR0 or MAR1
        4.       381
        5. 8.5.2.3 ADC Early Interrupt to CLA Response
      3. 8.5.3 Parallel Instructions
        1. 8.5.3.1 Math Operation with Parallel Load
        2. 8.5.3.2 Multiply with Parallel Add
      4. 8.5.4 CLA Task Execution Latency
    6. 8.6 Software
      1. 8.6.1 CLA Examples
        1. 8.6.1.1  CLA arcsine(x) using a lookup table (cla_asin_cpu01)
        2. 8.6.1.2  CLA arcsine(x) using a lookup table (cla_asin_cpu01) - C28X_DUAL
        3. 8.6.1.3  CLA Arcsine Example. - C28X_DUAL
        4. 8.6.1.4  CLA arctangent(x) using a lookup table (cla_atan_cpu01)
        5. 8.6.1.5  CLA 2 Pole 2 Zero Infinite Impulse Response Filter (cla_iir2p2z_cpu01) - C28X_DUAL
        6. 8.6.1.6  CLA 2-pole 2-zero IIR Filter Example for F2837xD. - C28X_DUAL
        7. 8.6.1.7  CLA background nesting task
        8. 8.6.1.8  Controlling PWM output using CLA
        9. 8.6.1.9  Just-in-time ADC sampling with CLA
        10. 8.6.1.10 Optimal offloading of control algorithms to CLA
        11. 8.6.1.11 Handling shared resources across C28x and CLA
    7. 8.7 Instruction Set
      1. 8.7.1 Instruction Descriptions
      2. 8.7.2 Addressing Modes and Encoding
      3. 8.7.3 Instructions
        1.       MABSF32 MRa, MRb
        2.       MADD32 MRa, MRb, MRc
        3.       MADDF32 MRa, #16FHi, MRb
        4.       MADDF32 MRa, MRb, #16FHi
        5.       MADDF32 MRa, MRb, MRc
        6.       MADDF32 MRd, MRe, MRf||MMOV32 mem32, MRa
        7.       MADDF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        8.       MAND32 MRa, MRb, MRc
        9.       MASR32 MRa, #SHIFT
        10.       MBCNDD 16BitDest [, CNDF]
        11.       MCCNDD 16BitDest [, CNDF]
        12.       MCLRC BGINTM
        13.       MCMP32 MRa, MRb
        14.       MCMPF32 MRa, MRb
        15.       MCMPF32 MRa, #16FHi
        16.       MDEBUGSTOP
        17.       MDEBUGSTOP1
        18.       MEALLOW
        19.       MEDIS
        20.       MEINVF32 MRa, MRb
        21.       MEISQRTF32 MRa, MRb
        22.       MF32TOI16 MRa, MRb
        23.       MF32TOI16R MRa, MRb
        24.       MF32TOI32 MRa, MRb
        25.       MF32TOUI16 MRa, MRb
        26.       MF32TOUI16R MRa, MRb
        27.       MF32TOUI32 MRa, MRb
        28.       MFRACF32 MRa, MRb
        29.       MI16TOF32 MRa, MRb
        30.       MI16TOF32 MRa, mem16
        31.       MI32TOF32 MRa, mem32
        32.       MI32TOF32 MRa, MRb
        33.       MLSL32 MRa, #SHIFT
        34.       MLSR32 MRa, #SHIFT
        35.       MMACF32 MR3, MR2, MRd, MRe, MRf ||MMOV32 MRa, mem32
        36.       MMAXF32 MRa, MRb
        37.       MMAXF32 MRa, #16FHi
        38.       MMINF32 MRa, MRb
        39.       MMINF32 MRa, #16FHi
        40.       MMOV16 MARx, MRa, #16I
        41.       MMOV16 MARx, mem16
        42.       MMOV16 mem16, MARx
        43.       MMOV16 mem16, MRa
        44.       MMOV32 mem32, MRa
        45.       MMOV32 mem32, MSTF
        46.       MMOV32 MRa, mem32 [, CNDF]
        47.       MMOV32 MRa, MRb [, CNDF]
        48.       MMOV32 MSTF, mem32
        49.       MMOVD32 MRa, mem32
        50.       MMOVF32 MRa, #32F
        51.       MMOVI16 MARx, #16I
        52.       MMOVI32 MRa, #32FHex
        53.       MMOVIZ MRa, #16FHi
        54.       MMOVZ16 MRa, mem16
        55.       MMOVXI MRa, #16FLoHex
        56.       MMPYF32 MRa, MRb, MRc
        57.       MMPYF32 MRa, #16FHi, MRb
        58.       MMPYF32 MRa, MRb, #16FHi
        59.       MMPYF32 MRa, MRb, MRc||MADDF32 MRd, MRe, MRf
        60.       MMPYF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        61.       MMPYF32 MRd, MRe, MRf ||MMOV32 mem32, MRa
        62.       MMPYF32 MRa, MRb, MRc ||MSUBF32 MRd, MRe, MRf
        63.       MNEGF32 MRa, MRb[, CNDF]
        64.       MNOP
        65.       MOR32 MRa, MRb, MRc
        66.       MRCNDD [CNDF]
        67.       MSETC BGINTM
        68.       MSETFLG FLAG, VALUE
        69.       MSTOP
        70.       MSUB32 MRa, MRb, MRc
        71.       MSUBF32 MRa, MRb, MRc
        72.       MSUBF32 MRa, #16FHi, MRb
        73.       MSUBF32 MRd, MRe, MRf ||MMOV32 MRa, mem32
        74.       MSUBF32 MRd, MRe, MRf ||MMOV32 mem32, MRa
        75.       MSWAPF MRa, MRb [, CNDF]
        76.       MTESTTF CNDF
        77.       MUI16TOF32 MRa, mem16
        78.       MUI16TOF32 MRa, MRb
        79.       MUI32TOF32 MRa, mem32
        80.       MUI32TOF32 MRa, MRb
        81.       MXOR32 MRa, MRb, MRc
    8. 8.8 CLA Registers
      1. 8.8.1 CLA Base Address Table (C28)
      2. 8.8.2 CLA_ONLY_REGS Registers
      3. 8.8.3 CLA_SOFTINT_REGS Registers
      4. 8.8.4 CLA_REGS Registers
      5. 8.8.5 CLA Registers to Driverlib Functions
  11. Configurable Logic Block (CLB)
    1. 9.1  Introduction
      1. 9.1.1 CLB Related Collateral
    2. 9.2  Description
      1. 9.2.1 CLB Clock
    3. 9.3  CLB Input/Output Connection
      1. 9.3.1 Overview
      2. 9.3.2 CLB Input Selection
      3. 9.3.3 CLB Output Selection
      4. 9.3.4 CLB Output Signal Multiplexer
    4. 9.4  CLB Tile
      1. 9.4.1 Static Switch Block
      2. 9.4.2 Counter Block
        1. 9.4.2.1 Counter Description
        2. 9.4.2.2 Counter Operation
        3. 9.4.2.3 Serializer Mode
        4. 9.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 9.4.3 FSM Block
      4. 9.4.4 LUT4 Block
      5. 9.4.5 Output LUT Block
      6. 9.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 9.4.7 High Level Controller (HLC)
        1. 9.4.7.1 High Level Controller Events
        2. 9.4.7.2 High Level Controller Instructions
        3. 9.4.7.3 <Src> and <Dest>
        4. 9.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 9.5  CPU Interface
      1. 9.5.1 Register Description
      2. 9.5.2 Non-Memory Mapped Registers
    6. 9.6  DMA Access
    7. 9.7  CLB Data Export Through SPI RX Buffer
    8. 9.8  CLB Pipeline Mode
    9. 9.9  Software
      1. 9.9.1 CLB Examples
        1. 9.9.1.1  CLB Empty Project
        2. 9.9.1.2  CLB Combinational Logic
        3. 9.9.1.3  CLB GPIO Input Filter
        4. 9.9.1.4  CLB Auxilary PWM
        5. 9.9.1.5  CLB PWM Protection
        6. 9.9.1.6  CLB Event Window
        7. 9.9.1.7  CLB Signal Generator
        8. 9.9.1.8  CLB State Machine
        9. 9.9.1.9  CLB External Signal AND Gate
        10. 9.9.1.10 CLB Timer
        11. 9.9.1.11 CLB Timer Two States
        12. 9.9.1.12 CLB Interrupt Tag
        13. 9.9.1.13 CLB Output Intersect
        14. 9.9.1.14 CLB PUSH PULL
        15. 9.9.1.15 CLB Multi Tile
        16. 9.9.1.16 CLB Tile to Tile Delay
        17. 9.9.1.17 CLB based One-shot PWM
        18. 9.9.1.18 CLB AOC Control
        19. 9.9.1.19 CLB AOC Release Control
        20. 9.9.1.20 CLB XBARs
        21. 9.9.1.21 CLB AOC Control
        22. 9.9.1.22 CLB Serializer
        23. 9.9.1.23 CLB LFSR
        24. 9.9.1.24 CLB Lock Output Mask
        25. 9.9.1.25 CLB INPUT Pipeline Mode
        26. 9.9.1.26 CLB Clocking and PIPELINE Mode
        27. 9.9.1.27 CLB SPI Data Export
        28. 9.9.1.28 CLB SPI Data Export DMA
        29. 9.9.1.29 CLB Trip Zone Timestamp
        30. 9.9.1.30 CLB CRC
    10. 9.10 CLB Registers
      1. 9.10.1 CLB Base Address Table (C28)
      2. 9.10.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 9.10.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 9.10.4 CLB_DATA_EXCHANGE_REGS Registers
      5. 9.10.5 CLB Registers to Driverlib Functions
  12. 10Dual-Clock Comparator (DCC)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Module Operation
      1. 10.2.1 Configuring DCC Counters
      2. 10.2.2 Single-Shot Measurement Mode
      3. 10.2.3 Continuous Monitoring Mode
      4. 10.2.4 Error Conditions
    3. 10.3 Interrupts
    4. 10.4 Software
      1. 10.4.1 DCC Examples
        1. 10.4.1.1 DCC Single shot Clock verification
        2. 10.4.1.2 DCC Single shot Clock measurement
        3. 10.4.1.3 DCC Continuous clock monitoring
        4. 10.4.1.4 DCC Continuous clock monitoring
        5. 10.4.1.5 DCC Detection of clock failure
    5. 10.5 DCC Registers
      1. 10.5.1 DCC Base Address Table (C28)
      2. 10.5.2 DCC_REGS Registers
      3. 10.5.3 DCC Registers to Driverlib Functions
  13. 11Direct Memory Access (DMA)
    1. 11.1 Introduction
      1. 11.1.1 Features
      2. 11.1.2 Block Diagram
    2. 11.2 Architecture
      1. 11.2.1 Peripheral Interrupt Event Trigger Sources
      2. 11.2.2 DMA Bus
    3. 11.3 Address Pointer and Transfer Control
    4. 11.4 Pipeline Timing and Throughput
    5. 11.5 CPU and CLA Arbitration
    6. 11.6 Channel Priority
      1. 11.6.1 Round-Robin Mode
      2. 11.6.2 Channel 1 High-Priority Mode
    7. 11.7 Overrun Detection Feature
    8. 11.8 Software
      1. 11.8.1 DMA Examples
        1. 11.8.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 11.8.1.2 DMA Transfer Shared Peripheral - C28X_DUAL
        3. 11.8.1.3 DMA Transfer for Shared Peripheral Example (CPU2) - C28X_DUAL
        4. 11.8.1.4 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
        5. 11.8.1.5 DMA Transfer Shared Peripheral - C28X_DUAL
    9. 11.9 DMA Registers
      1. 11.9.1 DMA Base Address Table (C28)
      2. 11.9.2 DMA_REGS Registers
      3. 11.9.3 DMA_CH_REGS Registers
      4. 11.9.4 DMA Registers to Driverlib Functions
  14. 12External Memory Interface (EMIF)
    1. 12.1 Introduction
      1. 12.1.1 Purpose of the Peripheral
      2. 12.1.2 EMIF Related Collateral
      3. 12.1.3 Features
        1. 12.1.3.1 Asynchronous Memory Support
        2. 12.1.3.2 Synchronous DRAM Memory Support
      4. 12.1.4 Functional Block Diagram
      5. 12.1.5 Configuring Device Pins
    2. 12.2 EMIF Module Architecture
      1. 12.2.1  EMIF Clock Control
      2. 12.2.2  EMIF Requests
      3. 12.2.3  EMIF Signal Descriptions
      4. 12.2.4  EMIF Signal Multiplexing Control
      5. 12.2.5  SDRAM Controller and Interface
        1. 12.2.5.1  SDRAM Commands
        2. 12.2.5.2  Interfacing to SDRAM
        3. 12.2.5.3  SDRAM Configuration Registers
        4. 12.2.5.4  SDRAM Auto-Initialization Sequence
        5. 12.2.5.5  SDRAM Configuration Procedure
        6. 12.2.5.6  EMIF Refresh Controller
          1. 12.2.5.6.1 Determining the Appropriate Value for the RR Field
        7. 12.2.5.7  Self-Refresh Mode
        8. 12.2.5.8  Power-Down Mode
        9. 12.2.5.9  SDRAM Read Operation
        10. 12.2.5.10 SDRAM Write Operations
        11. 12.2.5.11 Mapping from Logical Address to EMIF Pins
      6. 12.2.6  Asynchronous Controller and Interface
        1. 12.2.6.1 Interfacing to Asynchronous Memory
        2. 12.2.6.2 Accessing Larger Asynchronous Memories
        3. 12.2.6.3 Configuring EMIF for Asynchronous Accesses
        4. 12.2.6.4 Read and Write Operations in Normal Mode
          1. 12.2.6.4.1 Asynchronous Read Operations (Normal Mode)
          2. 12.2.6.4.2 Asynchronous Write Operations (Normal Mode)
        5. 12.2.6.5 Read and Write Operation in Select Strobe Mode
          1. 12.2.6.5.1 Asynchronous Read Operations (Select Strobe Mode)
          2. 12.2.6.5.2 Asynchronous Write Operations (Select Strobe Mode)
        6. 12.2.6.6 Extended Wait Mode and the EM1WAIT Pin
      7. 12.2.7  Data Bus Parking
      8. 12.2.8  Reset and Initialization Considerations
      9. 12.2.9  Interrupt Support
        1. 12.2.9.1 Interrupt Events
      10. 12.2.10 DMA Event Support
      11. 12.2.11 EMIF Signal Multiplexing
      12. 12.2.12 Memory Map
      13. 12.2.13 Priority and Arbitration
      14. 12.2.14 System Considerations
        1. 12.2.14.1 Asynchronous Request Times
      15. 12.2.15 Power Management
        1. 12.2.15.1 Power Management Using Self-Refresh Mode
        2. 12.2.15.2 Power Management Using Power Down Mode
      16. 12.2.16 Emulation Considerations
    3. 12.3 Example Configuration
      1. 12.3.1 Hardware Interface
      2. 12.3.2 Software Configuration
        1. 12.3.2.1 Configuring the SDRAM Interface
          1. 12.3.2.1.1 PLL Programming for EMIF to K4S641632H-TC(L)70 Interface
          2. 12.3.2.1.2 SDRAM Timing Register (SDRAM_TR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          3. 12.3.2.1.3 SDRAM Self Refresh Exit Timing Register (SDR_EXT_TMNG) Settings for EMIF to K4S641632H-TC(L)70 Interface
          4. 12.3.2.1.4 SDRAM Refresh Control Register (SDRAM_RCR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          5. 12.3.2.1.5 SDRAM Configuration Register (SDRAM_CR) Settings for EMIF to K4S641632H-TC(L)70 Interface
        2. 12.3.2.2 Configuring the Flash Interface
          1. 12.3.2.2.1 Asynchronous 1 Configuration Register (ASYNC_CS2_CFG) Settings for EMIF to LH28F800BJE-PTTL90 Interface
    4. 12.4 Software
      1. 12.4.1 EMIF Examples
        1. 12.4.1.1  Pin setup for EMIF module accessing ASRAM.
        2. 12.4.1.2  EMIF1 ASYNC module accessing 16bit ASRAM.
        3. 12.4.1.3  EMIF1 ASYNC module accessing 16bit ASRAM through CPU1 and CPU2. - C28X_DUAL
        4. 12.4.1.4  EMIF1 ASYNC module accessing 16bit ASRAM trhough CPU1 and CPU2. - C28X_DUAL
        5. 12.4.1.5  EMIF1 module accessing 16bit ASRAM as code memory.
        6. 12.4.1.6  EMIF1 module accessing 16bit SDRAM using memcpy_fast_far().
        7. 12.4.1.7  EMIF1 module accessing 16bit SDRAM then puts into Self Refresh mode before entering Low Power Mode.
        8. 12.4.1.8  EMIF1 module accessing 32bit SDRAM using DMA.
        9. 12.4.1.9  EMIF1 module accessing 16bit SDRAM using alternate address mapping.
        10. 12.4.1.10 EMIF1 ASYNC module accessing 16bit ASRAM HIC FSI
        11. 12.4.1.11 EMIF1 ASYNC module accessing 8bit HIC controller.
    5. 12.5 EMIF Registers
      1. 12.5.1 EMIF Base Address Table (C28)
      2. 12.5.2 EMIF_REGS Registers
      3. 12.5.3 EMIF1_CONFIG_REGS Registers
      4. 12.5.4 EMIF2_CONFIG_REGS Registers
      5. 12.5.5 EMIF Registers to Driverlib Functions
  15. 13Flash Module
    1. 13.1  Introduction to Flash and OTP Memory
      1. 13.1.1 FLASH Related Collateral
      2. 13.1.2 Features
      3. 13.1.3 Flash Tools
      4. 13.1.4 Default Flash Configuration
    2. 13.2  Flash Bank, OTP, and Pump
    3. 13.3  Flash Module Controller (FMC)
    4. 13.4  Flash and OTP Memory Power-Down Modes and Wakeup
    5. 13.5  Active Grace Period
    6. 13.6  Flash and OTP Memory Performance
    7. 13.7  Flash Read Interface
      1. 13.7.1 C28x-FMC (CPU1-FMC and CPU2-FMC) Flash Read Interface
        1. 13.7.1.1 Standard Read Mode
        2. 13.7.1.2 Prefetch Mode
          1. 13.7.1.2.1 Data Cache
      2. 13.7.2 M4-FMC (CM-FMC) Flash Read Interface
        1. 13.7.2.1 Standard Read Mode
        2. 13.7.2.2 Cache Mode
          1. 13.7.2.2.1 Program Cache
          2. 13.7.2.2.2 Data Cache
    8. 13.8  Flash Erase and Program
      1. 13.8.1 Erase
      2. 13.8.2 Program
      3. 13.8.3 Verify
    9. 13.9  Error Correction Code (ECC) Protection
      1. 13.9.1 Single-Bit Data Error
      2. 13.9.2 Uncorrectable Error
      3. 13.9.3 SECDED Logic Correctness Check
    10. 13.10 Reserved Locations Within Flash and OTP Memory
    11. 13.11 Migrating an Application from RAM to Flash
    12. 13.12 Procedure to Change the Flash Control Registers
    13. 13.13 Flash Pump Ownership Semaphore
    14. 13.14 Software
      1. 13.14.1 FLASH Examples
        1. 13.14.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly - CM
        2. 13.14.1.2 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
        3. 13.14.1.3 Flash ECC Test Mode
        4. 13.14.1.4 Flash ECC Test Mode - CM
    15. 13.15 Flash Registers
      1. 13.15.1 FLASH Base Address Table (C28)
      2. 13.15.2 CM FLASH Base Address Table (CM)
      3. 13.15.3 FLASH_CTRL_REGS Registers
      4. 13.15.4 FLASH_ECC_REGS Registers
      5. 13.15.5 CM_FLASH_CTRL_REGS Registers
      6. 13.15.6 CM_FLASH_ECC_REGS Registers
      7. 13.15.7 FLASH_PUMP_SEMAPHORE_REGS Registers
      8. 13.15.8 FLASH Registers to Driverlib Functions
  16. 14Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 14.1 Introduction
      1. 14.1.1 ERAD Related Collateral
    2. 14.2 Enhanced Bus Comparator Unit
      1. 14.2.1 Enhanced Bus Comparator Unit Operations
      2. 14.2.2 Event Masking and Exporting
    3. 14.3 System Event Counter Unit
      1. 14.3.1 System Event Counter Modes
        1. 14.3.1.1 Counting Active Levels Versus Edges
        2. 14.3.1.2 Max Mode
        3. 14.3.1.3 Cumulative Mode
        4. 14.3.1.4 Input Signal Selection
      2. 14.3.2 Reset on Event
      3. 14.3.3 Operation Conditions
    4. 14.4 ERAD Ownership, Initialization and Reset
    5. 14.5 ERAD Programming Sequence
      1. 14.5.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 14.5.2 Timer and Counter Programming Sequence
    6. 14.6 Cyclic Redundancy Check Unit
      1. 14.6.1 CRC Unit Qualifier
      2. 14.6.2 CRC Unit Programming Sequence
    7. 14.7 Program Counter Trace
      1. 14.7.1 Functional Block Diagram
      2. 14.7.2 Trace Qualification Modes
      3. 14.7.3 Trace Memory
      4. 14.7.4 Trace Input Signal Conditioning
      5. 14.7.5 PC Trace Software Operation
      6. 14.7.6 Trace Operation in Debug Mode
    8. 14.8 Software
      1. 14.8.1 ERAD Examples
        1. 14.8.1.1  ERAD Profiling Interrupts
        2. 14.8.1.2  ERAD Profile Function
        3. 14.8.1.3  ERAD Profile Function
        4. 14.8.1.4  ERAD HWBP Monitor Program Counter
        5. 14.8.1.5  ERAD HWBP Monitor Program Counter
        6. 14.8.1.6  ERAD Profile Function
        7. 14.8.1.7  ERAD HWBP Stack Overflow Detection
        8. 14.8.1.8  ERAD HWBP Stack Overflow Detection
        9. 14.8.1.9  ERAD Stack Overflow
        10. 14.8.1.10 ERAD Profile Interrupts CLA
        11. 14.8.1.11 ERAD Profiling Interrupts
        12. 14.8.1.12 ERAD Profiling Interrupts
        13. 14.8.1.13 ERAD MEMORY ACCESS RESTRICT
        14. 14.8.1.14 ERAD INTERRUPT ORDER
        15. 14.8.1.15 ERAD AND CLB
        16. 14.8.1.16 ERAD PWM PROTECTION
    9. 14.9 ERAD Registers
      1. 14.9.1 ERAD Base Address Table (C28)
      2. 14.9.2 ERAD_GLOBAL_REGS Registers
      3. 14.9.3 ERAD_HWBP_REGS Registers
      4. 14.9.4 ERAD_COUNTER_REGS Registers
      5. 14.9.5 ERAD_CRC_GLOBAL_REGS Registers
      6. 14.9.6 ERAD_CRC_REGS Registers
      7. 14.9.7 ERAD Registers to Driverlib Functions
  17. 15General-Purpose Input/Output (GPIO)
    1. 15.1  Introduction
      1. 15.1.1 GPIO Related Collateral
    2. 15.2  Configuration Overview
    3. 15.3  Digital General-Purpose I/O Control
    4. 15.4  Input Qualification
      1. 15.4.1 No Synchronization (Asynchronous Input)
      2. 15.4.2 Synchronization to SYSCLKOUT Only
      3. 15.4.3 Qualification Using a Sampling Window
    5. 15.5  USB Signals
    6. 15.6  SPI Signals
    7. 15.7  GPIO and Peripheral Muxing
      1. 15.7.1 GPIO Muxing
      2. 15.7.2 Peripheral Muxing
    8. 15.8  Internal Pullup Configuration Requirements
    9. 15.9  Software
      1. 15.9.1 GPIO Examples
        1. 15.9.1.1 Device GPIO Setup
        2. 15.9.1.2 Device GPIO Toggle
        3. 15.9.1.3 Device GPIO Interrupt
      2. 15.9.2 LED Examples
        1. 15.9.2.1 LED Blinky Example (CM) - C28X_CM
        2. 15.9.2.2 LED Blinky Example - C28X_DUAL
        3. 15.9.2.3 LED Blinky Example - C28X_CM
        4. 15.9.2.4 LED Blinky Example with DCSM
        5. 15.9.2.5 LED Blinky Example - C28X_DUAL
    10. 15.10 GPIO Registers
      1. 15.10.1 GPIO Base Address Table (C28)
      2. 15.10.2 CM GPIO Base Address Table (CM)
      3. 15.10.3 GPIO_CTRL_REGS Registers
      4. 15.10.4 GPIO_DATA_REGS Registers
      5. 15.10.5 GPIO_DATA_READ_REGS Registers
      6. 15.10.6 CM_GPIO_DATA_REGS Registers
      7. 15.10.7 CM_GPIO_DATA_READ_REGS Registers
      8. 15.10.8 GPIO Registers to Driverlib Functions
  18. 16Interprocessor Communication (IPC)
    1. 16.1 Introduction
    2. 16.2 Message RAMs
    3. 16.3 IPC Flags and Interrupts
    4. 16.4 IPC Command Registers
    5. 16.5 Free-Running Counter
    6. 16.6 IPC Communication Protocol
    7. 16.7 Software
      1. 16.7.1 IPC Examples
        1. 16.7.1.1  IPC basic message passing example with interrupt - C28X_CM
        2. 16.7.1.2  IPC basic message passing example with interrupt - C28X_CM
        3. 16.7.1.3  IPC basic message passing example with interrupt - C28X_DUAL
        4. 16.7.1.4  IPC basic message passing example with interrupt - C28X_DUAL
        5. 16.7.1.5  IPC message passing example with interrupt and message queue - C28X_CM
        6. 16.7.1.6  IPC message passing example with interrupt and message queue - C28X_CM
        7. 16.7.1.7  IPC message passing example with interrupt and message queue - C28X_DUAL
        8. 16.7.1.8  IPC message passing example with interrupt and message queue - C28X_DUAL
        9. 16.7.1.9  IPC basic message passing example with interrupt - C28X_DUAL
        10. 16.7.1.10 IPC basic message passing example with interrupt - C28X_DUAL
        11. 16.7.1.11 IPC message passing example with interrupt and message queue - C28X_DUAL
        12. 16.7.1.12 IPC message passing example with interrupt and message queue - C28X_DUAL
    8. 16.8 IPC Registers
      1. 16.8.1 IPC Base Address Table (C28)
      2. 16.8.2 CM IPC Base Address Table (CM)
      3. 16.8.3 CPU1TOCPU2_IPC_REGS_CPU1VIEW Registers
      4. 16.8.4 CPU1TOCPU2_IPC_REGS_CPU2VIEW Registers
      5. 16.8.5 CPU1TOCM_IPC_REGS_CPU1VIEW Registers
      6. 16.8.6 CPU1TOCM_IPC_REGS_CMVIEW Registers
      7. 16.8.7 CPU2TOCM_IPC_REGS_CPU2VIEW Registers
      8. 16.8.8 CPU2TOCM_IPC_REGS_CMVIEW Registers
      9. 16.8.9 IPC Registers to Driverlib Functions
  19. 17Crossbar (X-BAR)
    1. 17.1 Input X-BAR and CLB Input X-BAR
      1. 17.1.1 CLB Input X-BAR
    2. 17.2 ePWM, CLB, and GPIO Output X-BAR
      1. 17.2.1 ePWM X-BAR
        1. 17.2.1.1 ePWM X-BAR Architecture
      2. 17.2.2 CLB X-BAR
        1. 17.2.2.1 CLB X-BAR Architecture
      3. 17.2.3 GPIO Output X-BAR
        1. 17.2.3.1 GPIO Output X-BAR Architecture
      4. 17.2.4 CLB Output X-BAR
        1. 17.2.4.1 CLB Output X-BAR Architecture
      5. 17.2.5 X-BAR Flags
    3. 17.3 XBAR Registers
      1. 17.3.1 XBAR Base Address Table (C28)
      2. 17.3.2 INPUT_XBAR_REGS Registers
      3. 17.3.3 XBAR_REGS Registers
      4. 17.3.4 EPWM_XBAR_REGS Registers
      5. 17.3.5 CLB_XBAR_REGS Registers
      6. 17.3.6 OUTPUT_XBAR_REGS Registers
      7. 17.3.7 Register to Driverlib Function Mapping
        1. 17.3.7.1 INPUTXBAR Registers to Driverlib Functions
        2. 17.3.7.2 XBAR Registers to Driverlib Functions
        3. 17.3.7.3 EPWMXBAR Registers to Driverlib Functions
        4. 17.3.7.4 CLBXBAR Registers to Driverlib Functions
        5. 17.3.7.5 OUTPUTXBAR Registers to Driverlib Functions
  20. 18► ANALOG PERIPHERALS
    1. 18.1 Technical Reference Manual Overview
  21. 19Analog Subsystem
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 Block Diagram
    2. 19.2 Optimizing Power-Up Time
    3. 19.3 Analog Subsystem Registers
      1. 19.3.1 ASBSYS Base Address Table (C28)
      2. 19.3.2 ANALOG_SUBSYS_REGS Registers
  22. 20Analog-to-Digital Converter (ADC)
    1. 20.1  Introduction
      1. 20.1.1 ADC Related Collateral
      2. 20.1.2 Features
      3. 20.1.3 Block Diagram
    2. 20.2  ADC Configurability
      1. 20.2.1 Clock Configuration
      2. 20.2.2 Resolution
      3. 20.2.3 Voltage Reference
        1. 20.2.3.1 External Reference Mode
      4. 20.2.4 Signal Mode
      5. 20.2.5 Expected Conversion Results
      6. 20.2.6 Interpreting Conversion Results
    3. 20.3  SOC Principle of Operation
      1. 20.3.1 SOC Configuration
      2. 20.3.2 Trigger Operation
      3. 20.3.3 ADC Acquisition (Sample and Hold) Window
      4. 20.3.4 ADC Input Models
      5. 20.3.5 Channel Selection
    4. 20.4  SOC Configuration Examples
      1. 20.4.1 Single Conversion from ePWM Trigger
      2. 20.4.2 Oversampled Conversion from ePWM Trigger
      3. 20.4.3 Multiple Conversions from CPU Timer Trigger
      4. 20.4.4 Software Triggering of SOCs
    5. 20.5  ADC Conversion Priority
    6. 20.6  Burst Mode
      1. 20.6.1 Burst Mode Example
      2. 20.6.2 Burst Mode Priority Example
    7. 20.7  EOC and Interrupt Operation
      1. 20.7.1 Interrupt Overflow
      2. 20.7.2 Continue to Interrupt Mode
      3. 20.7.3 Early Interrupt Configuration Mode
    8. 20.8  Post-Processing Blocks
      1. 20.8.1 PPB Offset Correction
      2. 20.8.2 PPB Error Calculation
      3. 20.8.3 PPB Limit Detection and Zero-Crossing Detection
      4. 20.8.4 PPB Sample Delay Capture
    9. 20.9  Opens/Shorts Detection Circuit (OSDETECT)
      1. 20.9.1 Implementation
      2. 20.9.2 Detecting an Open Input Pin
      3. 20.9.3 Detecting a Shorted Input Pin
    10. 20.10 Power-Up Sequence
    11. 20.11 ADC Calibration
      1. 20.11.1 ADC Zero Offset Calibration
      2. 20.11.2 ADC Calibration Routines in OTP Memory
    12. 20.12 ADC Timings
      1. 20.12.1 ADC Timing Diagrams
    13. 20.13 Additional Information
      1. 20.13.1 Ensuring Synchronous Operation
        1. 20.13.1.1 Basic Synchronous Operation
        2. 20.13.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 20.13.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 20.13.1.4 Synchronous Operation with Different Resolutions
        5. 20.13.1.5 Non-overlapping Conversions
      2. 20.13.2 Choosing an Acquisition Window Duration
      3. 20.13.3 Achieving Simultaneous Sampling
      4. 20.13.4 Result Register Mapping
      5. 20.13.5 Internal Temperature Sensor
      6. 20.13.6 Designing an External Reference Circuit
    14. 20.14 Software
      1. 20.14.1 ADC Examples
        1. 20.14.1.1  ADC Software Triggering
        2. 20.14.1.2  ADC ePWM Triggering
        3. 20.14.1.3  ADC Temperature Sensor Conversion
        4. 20.14.1.4  ADC Synchronous SOC Software Force (adc_soc_software_sync)
        5. 20.14.1.5  ADC Continuous Triggering (adc_soc_continuous)
        6. 20.14.1.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        7. 20.14.1.7  ADC PPB Offset (adc_ppb_offset)
        8. 20.14.1.8  ADC PPB Limits (adc_ppb_limits)
        9. 20.14.1.9  ADC PPB Delay Capture (adc_ppb_delay)
        10. 20.14.1.10 ADC ePWM Triggering Multiple SOC
        11. 20.14.1.11 ADC Burst Mode
        12. 20.14.1.12 ADC Burst Mode Oversampling
        13. 20.14.1.13 ADC SOC Oversampling
        14. 20.14.1.14 ADC PPB PWM trip (adc_ppb_pwm_trip)
        15. 20.14.1.15 ADC High Priority SOC (adc_high_priority_soc)
        16. 20.14.1.16 ADC Interleaved Averaging in Software
        17. 20.14.1.17 ADC Open Shorts Detection (adc_open_shorts_detection)
    15. 20.15 ADC Registers
      1. 20.15.1 ADC Base Address Table (C28)
      2. 20.15.2 ADC_REGS Registers
      3. 20.15.3 ADC_RESULT_REGS Registers
      4. 20.15.4 ADC Registers to Driverlib Functions
  23. 21Buffered Digital-to-Analog Converter (DAC)
    1. 21.1 Introduction
      1. 21.1.1 DAC Related Collateral
      2. 21.1.2 Features
      3. 21.1.3 Block Diagram
    2. 21.2 Using the DAC
      1. 21.2.1 Initialization Sequence
      2. 21.2.2 DAC Offset Adjustment
      3. 21.2.3 EPWMSYNCPER Signal
    3. 21.3 Lock Registers
    4. 21.4 Software
      1. 21.4.1 DAC Examples
        1. 21.4.1.1 Buffered DAC Enable
        2. 21.4.1.2 Buffered DAC Random
        3. 21.4.1.3 Buffered DAC Sine (buffdac_sine)
    5. 21.5 DAC Registers
      1. 21.5.1 DAC Base Address Table (C28)
      2. 21.5.2 DAC_REGS Registers
      3. 21.5.3 DAC Registers to Driverlib Functions
  24. 22Comparator Subsystem (CMPSS)
    1. 22.1 Introduction
      1. 22.1.1 CMPSS Related Collateral
      2. 22.1.2 Features
      3. 22.1.3 Block Diagram
    2. 22.2 Comparator
    3. 22.3 Reference DAC
    4. 22.4 Ramp Generator
      1. 22.4.1 Ramp Generator Overview
      2. 22.4.2 Ramp Generator Behavior
      3. 22.4.3 Ramp Generator Behavior at Corner Cases
    5. 22.5 Digital Filter
      1. 22.5.1 Filter Initialization Sequence
    6. 22.6 Using the CMPSS
      1. 22.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 22.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 22.6.3 Calibrating the CMPSS
      4. 22.6.4 Enabling and Disabling the CMPSS Clock
    7. 22.7 Software
      1. 22.7.1 CMPSS Examples
        1. 22.7.1.1 CMPSS Asynchronous Trip
        2. 22.7.1.2 CMPSS Digital Filter Configuration
    8. 22.8 CMPSS Registers
      1. 22.8.1 CMPSS Base Address Table (C28)
      2. 22.8.2 CMPSS_REGS Registers
      3. 22.8.3 CMPSS Registers to Driverlib Functions
  25. 23► CONTROL PERIPHERALS
    1. 23.1 Technical Reference Manual Overview
  26. 24Enhanced Capture (eCAP)
    1. 24.1 Introduction
      1. 24.1.1 Features
      2. 24.1.2 ECAP Related Collateral
    2. 24.2 Description
    3. 24.3 Configuring Device Pins for the eCAP
    4. 24.4 Capture and APWM Operating Mode
    5. 24.5 Capture Mode Description
      1. 24.5.1  Event Prescaler
      2. 24.5.2  Edge Polarity Select and Qualifier
      3. 24.5.3  Continuous/One-Shot Control
      4. 24.5.4  32-Bit Counter and Phase Control
      5. 24.5.5  CAP1-CAP4 Registers
      6. 24.5.6  eCAP Synchronization
        1. 24.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 24.5.7  Interrupt Control
      8. 24.5.8  DMA Interrupt
      9. 24.5.9  Shadow Load and Lockout Control
      10. 24.5.10 APWM Mode Operation
    6. 24.6 Application of the eCAP Module
      1. 24.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 24.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 24.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 24.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 24.7 Application of the APWM Mode
      1. 24.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 24.8 Software
      1. 24.8.1 ECAP Examples
        1. 24.8.1.1 eCAP APWM Example
        2. 24.8.1.2 eCAP Capture PWM Example
        3. 24.8.1.3 eCAP APWM Phase-shift Example
        4. 24.8.1.4 eCAP Software Sync Example
    9. 24.9 eCAP Registers
      1. 24.9.1 ECAP Base Address Table (C28)
      2. 24.9.2 ECAP_REGS Registers
      3. 24.9.3 ECAP Registers to Driverlib Functions
  27. 25High Resolution Capture (HRCAP)
    1. 25.1 Introduction
      1. 25.1.1 HRCAP Related Collateral
      2. 25.1.2 Features
      3. 25.1.3 Description
    2. 25.2 Operational Details
      1. 25.2.1 HRCAP Clocking
      2. 25.2.2 HRCAP Initialization Sequence
      3. 25.2.3 HRCAP Interrupts
      4. 25.2.4 HRCAP Calibration
        1. 25.2.4.1 Applying the Scale Factor
    3. 25.3 Known Exceptions
    4. 25.4 Software
      1. 25.4.1 HRCAP Examples
        1. 25.4.1.1 HRCAP Capture and Calibration Example
    5. 25.5 HRCAP Registers
      1. 25.5.1 HRCAP Base Address Table (C28)
      2. 25.5.2 HRCAP_REGS Registers
      3. 25.5.3 HRCAP Registers to Driverlib Functions
  28. 26Enhanced Pulse Width Modulator (ePWM)
    1. 26.1  Introduction
      1. 26.1.1 EPWM Related Collateral
      2. 26.1.2 Submodule Overview
    2. 26.2  Configuring Device Pins
    3. 26.3  ePWM Modules Overview
    4. 26.4  Time-Base (TB) Submodule
      1. 26.4.1 Purpose of the Time-Base Submodule
      2. 26.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 26.4.3 Calculating PWM Period and Frequency
        1. 26.4.3.1 Time-Base Period Shadow Register
        2. 26.4.3.2 Time-Base Clock Synchronization
        3. 26.4.3.3 Time-Base Counter Synchronization
        4. 26.4.3.4 ePWM SYNC Selection
      4. 26.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 26.4.5 Simultaneous Writes to TBPRD and CMPx Registers Between ePWM Modules
      6. 26.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 26.4.7 Global Load
        1. 26.4.7.1 Global Load Pulse Pre-Scalar
        2. 26.4.7.2 One-Shot Load Mode
        3. 26.4.7.3 One-Shot Sync Mode
    5. 26.5  Counter-Compare (CC) Submodule
      1. 26.5.1 Purpose of the Counter-Compare Submodule
      2. 26.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 26.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 26.5.4 Count Mode Timing Waveforms
    6. 26.6  Action-Qualifier (AQ) Submodule
      1. 26.6.1 Purpose of the Action-Qualifier Submodule
      2. 26.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 26.6.3 Action-Qualifier Event Priority
      4. 26.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 26.6.5 Configuration Requirements for Common Waveforms
    7. 26.7  Dead-Band Generator (DB) Submodule
      1. 26.7.1 Purpose of the Dead-Band Submodule
      2. 26.7.2 Dead-band Submodule Additional Operating Modes
      3. 26.7.3 Operational Highlights for the Dead-Band Submodule
    8. 26.8  PWM Chopper (PC) Submodule
      1. 26.8.1 Purpose of the PWM Chopper Submodule
      2. 26.8.2 Operational Highlights for the PWM Chopper Submodule
      3. 26.8.3 Waveforms
        1. 26.8.3.1 One-Shot Pulse
        2. 26.8.3.2 Duty Cycle Control
    9. 26.9  Trip-Zone (TZ) Submodule
      1. 26.9.1 Purpose of the Trip-Zone Submodule
      2. 26.9.2 Operational Highlights for the Trip-Zone Submodule
        1. 26.9.2.1 Trip-Zone Configurations
      3. 26.9.3 Generating Trip Event Interrupts
    10. 26.10 Event-Trigger (ET) Submodule
      1. 26.10.1 Operational Overview of the ePWM Event-Trigger Submodule
    11. 26.11 Digital Compare (DC) Submodule
      1. 26.11.1 Purpose of the Digital Compare Submodule
      2. 26.11.2 Enhanced Trip Action Using CMPSS
      3. 26.11.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 26.11.4 Operation Highlights of the Digital Compare Submodule
        1. 26.11.4.1 Digital Compare Events
        2. 26.11.4.2 Event Filtering
        3. 26.11.4.3 Valley Switching
    12. 26.12 ePWM Crossbar (X-BAR)
    13. 26.13 Applications to Power Topologies
      1. 26.13.1  Overview of Multiple Modules
      2. 26.13.2  Key Configuration Capabilities
      3. 26.13.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 26.13.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 26.13.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 26.13.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 26.13.7  Practical Applications Using Phase Control Between PWM Modules
      8. 26.13.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 26.13.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 26.13.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 26.13.11 Controlling H-Bridge LLC Resonant Converter
    14. 26.14 Register Lock Protection
    15. 26.15 High-Resolution Pulse Width Modulator (HRPWM)
      1. 26.15.1 Operational Description of HRPWM
        1. 26.15.1.1 Controlling the HRPWM Capabilities
        2. 26.15.1.2 HRPWM Source Clock
        3. 26.15.1.3 Configuring the HRPWM
        4. 26.15.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 26.15.1.5 Principle of Operation
          1. 26.15.1.5.1 Edge Positioning
          2. 26.15.1.5.2 Scaling Considerations
          3. 26.15.1.5.3 Duty Cycle Range Limitation
          4. 26.15.1.5.4 High-Resolution Period
            1. 26.15.1.5.4.1 High-Resolution Period Configuration
        6. 26.15.1.6 Deadband High-Resolution Operation
        7. 26.15.1.7 Scale Factor Optimizing Software (SFO)
        8. 26.15.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 26.15.1.8.1 #Defines for HRPWM Header Files
          2. 26.15.1.8.2 Implementing a Simple Buck Converter
            1. 26.15.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 26.15.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 26.15.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 26.15.1.8.3.1 PWM DAC Function Initialization Code
            2. 26.15.1.8.3.2 PWM DAC Function Run-Time Code
      2. 26.15.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 26.15.2.1 Scale Factor Optimizer Function - int SFO()
        2. 26.15.2.2 Software Usage
          1. 26.15.2.2.1 A Sample of How to Add "Include" Files
          2.        1176
          3. 26.15.2.2.2 Declaring an Element
          4.        1178
          5. 26.15.2.2.3 Initializing With a Scale Factor Value
          6.        1180
          7. 26.15.2.2.4 SFO Function Calls
    16. 26.16 Software
      1. 26.16.1 EPWM Examples
        1. 26.16.1.1  ePWM Trip Zone
        2. 26.16.1.2  ePWM Up Down Count Action Qualifier
        3. 26.16.1.3  ePWM Synchronization
        4. 26.16.1.4  ePWM Digital Compare
        5. 26.16.1.5  ePWM Digital Compare Event Filter Blanking Window
        6. 26.16.1.6  ePWM Valley Switching
        7. 26.16.1.7  ePWM Digital Compare Edge Filter
        8. 26.16.1.8  ePWM Deadband
        9. 26.16.1.9  ePWM DMA
        10. 26.16.1.10 ePWM Chopper
        11. 26.16.1.11 EPWM Configure Signal
        12. 26.16.1.12 Realization of Monoshot mode
        13. 26.16.1.13 EPWM Action Qualifier (epwm_up_aq)
      2. 26.16.2 HRPWM Examples
        1. 26.16.2.1 HRPWM Duty Control with SFO
        2. 26.16.2.2 HRPWM Slider
        3. 26.16.2.3 HRPWM Period Control
        4. 26.16.2.4 HRPWM Duty Control with UPDOWN Mode
        5. 26.16.2.5 HRPWM Slider Test
        6. 26.16.2.6 HRPWM Duty Up Count
        7. 26.16.2.7 HRPWM Period Up-Down Count
    17. 26.17 ePWM Registers
      1. 26.17.1 EPWM Base Address Table (C28)
      2. 26.17.2 EPWM_REGS Registers
      3. 26.17.3 SYNC_SOC_REGS Registers
      4. 26.17.4 Register to Driverlib Function Mapping
        1. 26.17.4.1 EPWM Registers to Driverlib Functions
        2. 26.17.4.2 HRPWM Registers to Driverlib Functions
  29. 27Enhanced Quadrature Encoder Pulse (eQEP)
    1. 27.1  Introduction
      1. 27.1.1 EQEP Related Collateral
    2. 27.2  Configuring Device Pins
    3. 27.3  Description
      1. 27.3.1 EQEP Inputs
      2. 27.3.2 Functional Description
      3. 27.3.3 eQEP Memory Map
    4. 27.4  Quadrature Decoder Unit (QDU)
      1. 27.4.1 Position Counter Input Modes
        1. 27.4.1.1 Quadrature Count Mode
        2. 27.4.1.2 Direction-Count Mode
        3. 27.4.1.3 Up-Count Mode
        4. 27.4.1.4 Down-Count Mode
      2. 27.4.2 eQEP Input Polarity Selection
      3. 27.4.3 Position-Compare Sync Output
    5. 27.5  Position Counter and Control Unit (PCCU)
      1. 27.5.1 Position Counter Operating Modes
        1. 27.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM]=00)
        2. 27.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM]=01)
        3. 27.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 27.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 27.5.2 Position Counter Latch
        1. 27.5.2.1 Index Event Latch
        2. 27.5.2.2 Strobe Event Latch
      3. 27.5.3 Position Counter Initialization
      4. 27.5.4 eQEP Position-compare Unit
    6. 27.6  eQEP Edge Capture Unit
    7. 27.7  eQEP Watchdog
    8. 27.8  eQEP Unit Timer Base
    9. 27.9  QMA Module
      1. 27.9.1 Modes of Operation
        1. 27.9.1.1 QMA Mode-1 (QMACTRL[MODE]=1)
        2. 27.9.1.2 QMA Mode-2 (QMACTRL[MODE]=2)
      2. 27.9.2 Interrupt and Error Generation
    10. 27.10 eQEP Interrupt Structure
    11. 27.11 Software
      1. 27.11.1 EQEP Examples
        1. 27.11.1.1 Frequency Measurement Using eQEP
        2. 27.11.1.2 Position and Speed Measurement Using eQEP
        3. 27.11.1.3 ePWM frequency Measurement Using eQEP via xbar connection
        4. 27.11.1.4 Frequency Measurement Using eQEP via unit timeout interrupt
        5. 27.11.1.5 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 27.12 eQEP Registers
      1. 27.12.1 EQEP Base Address Table (C28)
      2. 27.12.2 EQEP_REGS Registers
      3. 27.12.3 EQEP Registers to Driverlib Functions
  30. 28Sigma Delta Filter Module (SDFM)
    1. 28.1  Introduction
      1. 28.1.1 SDFM Related Collateral
      2. 28.1.2 Features
      3. 28.1.3 Block Diagram
    2. 28.2  Configuring Device Pins
    3. 28.3  Input Qualification
    4. 28.4  Input Control Unit
    5. 28.5  SDFM Clock Control
    6. 28.6  Sinc Filter
      1. 28.6.1 Data Rate and Latency of the Sinc Filter
    7. 28.7  Data (Primary) Filter Unit
      1. 28.7.1 32-bit or 16-bit Data Filter Output Representation
      2. 28.7.2 Data FIFO
      3. 28.7.3 SDSYNC Event
    8. 28.8  Comparator (Secondary) Filter Unit
      1. 28.8.1 Higher Threshold (HLT) Comparators
      2. 28.8.2 Lower Threshold (LLT) Comparators
      3. 28.8.3 Digital Filter
    9. 28.9  Theoretical SDFM Filter Output
    10. 28.10 Interrupt Unit
      1. 28.10.1 SDFM (SDyERR) Interrupt Sources
      2. 28.10.2 Data Ready (DRINT) Interrupt Sources
    11. 28.11 Software
      1. 28.11.1 SDFM Examples
        1. 28.11.1.1 SDFM Filter Sync CPU
        2. 28.11.1.2 SDFM Filter Sync CLA
        3. 28.11.1.3 SDFM Filter Sync DMA
        4. 28.11.1.4 SDFM PWM Sync
        5. 28.11.1.5 SDFM Type 1 Filter FIFO
        6. 28.11.1.6 SDFM Filter Sync CLA
    12. 28.12 SDFM Registers
      1. 28.12.1 SDFM Base Address Table (C28)
      2. 28.12.2 SDFM_REGS Registers
      3. 28.12.3 SDFM Registers to Driverlib Functions
  31. 29► COMMUNICATION PERIPHERALS
    1. 29.1 Technical Reference Manual Overview
  32. 30Controller Area Network (CAN)
    1. 30.1  Introduction
      1. 30.1.1 DCAN Related Collateral
      2. 30.1.2 Features
      3. 30.1.3 Block Diagram
        1. 30.1.3.1 CAN Core
        2. 30.1.3.2 Message Handler
        3. 30.1.3.3 Message RAM
        4. 30.1.3.4 Registers and Message Object Access (IFx)
    2. 30.2  Functional Description
      1. 30.2.1 Configuring Device Pins
      2. 30.2.2 Address/Data Bus Bridge
    3. 30.3  Operating Modes
      1. 30.3.1 Initialization
      2. 30.3.2 CAN Message Transfer (Normal Operation)
        1. 30.3.2.1 Disabled Automatic Retransmission
        2. 30.3.2.2 Auto-Bus-On
      3. 30.3.3 Test Modes
        1. 30.3.3.1 Silent Mode
        2. 30.3.3.2 Loopback Mode
        3. 30.3.3.3 External Loopback Mode
        4. 30.3.3.4 Loopback Combined with Silent Mode
    4. 30.4  Multiple Clock Source
    5. 30.5  Interrupt Functionality
      1. 30.5.1 Message Object Interrupts
      2. 30.5.2 Status Change Interrupts
      3. 30.5.3 Error Interrupts
      4. 30.5.4 Peripheral Interrupt Expansion (PIE) Module Nomenclature for DCAN Interrupts
      5. 30.5.5 Interrupt Topologies
    6. 30.6  DMA Functionality
    7. 30.7  Parity Check Mechanism
      1. 30.7.1 Behavior on Parity Error
    8. 30.8  Debug Mode
    9. 30.9  Module Initialization
    10. 30.10 Configuration of Message Objects
      1. 30.10.1 Configuration of a Transmit Object for Data Frames
      2. 30.10.2 Configuration of a Transmit Object for Remote Frames
      3. 30.10.3 Configuration of a Single Receive Object for Data Frames
      4. 30.10.4 Configuration of a Single Receive Object for Remote Frames
      5. 30.10.5 Configuration of a FIFO Buffer
    11. 30.11 Message Handling
      1. 30.11.1  Message Handler Overview
      2. 30.11.2  Receive/Transmit Priority
      3. 30.11.3  Transmission of Messages in Event Driven CAN Communication
      4. 30.11.4  Updating a Transmit Object
      5. 30.11.5  Changing a Transmit Object
      6. 30.11.6  Acceptance Filtering of Received Messages
      7. 30.11.7  Reception of Data Frames
      8. 30.11.8  Reception of Remote Frames
      9. 30.11.9  Reading Received Messages
      10. 30.11.10 Requesting New Data for a Receive Object
      11. 30.11.11 Storing Received Messages in FIFO Buffers
      12. 30.11.12 Reading from a FIFO Buffer
    12. 30.12 CAN Bit Timing
      1. 30.12.1 Bit Time and Bit Rate
        1. 30.12.1.1 Synchronization Segment
        2. 30.12.1.2 Propagation Time Segment
        3. 30.12.1.3 Phase Buffer Segments and Synchronization
        4. 30.12.1.4 Oscillator Tolerance Range
      2. 30.12.2 Configuration of the CAN Bit Timing
        1. 30.12.2.1 Calculation of the Bit Timing Parameters
        2. 30.12.2.2 Example for Bit Timing at High Baudrate
        3. 30.12.2.3 Example for Bit Timing at Low Baudrate
    13. 30.13 Message Interface Register Sets
      1. 30.13.1 Message Interface Register Sets 1 and 2 (IF1 and IF2)
      2. 30.13.2 Message Interface Register Set 3 (IF3)
    14. 30.14 Message RAM
      1. 30.14.1 Structure of Message Objects
      2. 30.14.2 Addressing Message Objects in RAM
      3. 30.14.3 Message RAM Representation in Debug Mode
    15. 30.15 Software
      1. 30.15.1 CAN Examples
        1. 30.15.1.1  NMI handling - C28X_DUAL
        2. 30.15.1.2  CAN External Loopback
        3. 30.15.1.3  Watchdog Reset - C28X_DUAL
        4. 30.15.1.4  CAN Loopback - CM
        5. 30.15.1.5  CAN External Loopback with Interrupts
        6. 30.15.1.6  CAN External Loopback with Interrupts - C28X_DUAL
        7. 30.15.1.7  CAN External Loopback with Interrupts - CM
        8. 30.15.1.8  CAN-A to CAN-B External Transmit
        9. 30.15.1.9  CAN-A to CAN-B External Transmit - CM
        10. 30.15.1.10 CAN External Loopback with DMA
        11. 30.15.1.11 CAN Transmit and Receive Configurations - CM
        12. 30.15.1.12 CAN Transmit and Receive Configurations
        13. 30.15.1.13 CAN Error Generation Example
        14. 30.15.1.14 CAN Remote Request Loopback
        15. 30.15.1.15 CAN example that illustrates the usage of Mask registers
    16. 30.16 CAN Registers
      1. 30.16.1 CAN Base Address Table (C28)
      2. 30.16.2 CM CAN Base Address Table (CM)
      3. 30.16.3 CAN_REGS Registers
      4. 30.16.4 CAN Registers to Driverlib Functions
  33. 31EtherCAT® Slave Controller (ESC)
    1. 31.1 Introduction
      1. 31.1.1  ECAT Related Collateral
      2. 31.1.2  ESC Features
      3. 31.1.3  ESC Subsystem Integrated Features
      4. 31.1.4  F2838x ESC versus Beckhoff ET1100
      5. 31.1.5  EtherCAT IP Block Diagram
      6. 31.1.6  ESC Functional Blocks
        1. 31.1.6.1  Interface to EtherCAT Master
        2. 31.1.6.2  Process Data Interface
        3. 31.1.6.3  General-Purpose Inputs and Outputs
        4. 31.1.6.4  EtherCAT Processing Unit (EPU)
        5. 31.1.6.5  Fieldbus Memory Management Unit (FMMU)
        6. 31.1.6.6  Sync Manager
        7. 31.1.6.7  Monitoring
        8. 31.1.6.8  Reset Controller
        9. 31.1.6.9  PHY Management
        10. 31.1.6.10 Distributed Clock (DC)
        11. 31.1.6.11 EEPROM
        12. 31.1.6.12 Status / LEDs
      7. 31.1.7  EtherCAT Physical Layer
        1. 31.1.7.1 MII Interface
        2. 31.1.7.2 PHY Management Interface
          1. 31.1.7.2.1 PHY Address Configuration
          2. 31.1.7.2.2 PHY Reset Signal
          3. 31.1.7.2.3 PHY Clock
      8. 31.1.8  EtherCAT Protocol
      9. 31.1.9  EtherCAT State Machine (ESM)
      10. 31.1.10 More Information on EtherCAT
      11. 31.1.11 Beckhoff® Automation EtherCAT IP Errata
    2. 31.2 ESC and ESCSS Description
      1. 31.2.1  ESC RAM Parity and Memory Address Maps
        1. 31.2.1.1 ESC RAM Parity Logic
        2. 31.2.1.2 CPU1 ESC Memory Address Map
        3. 31.2.1.3 CM ESC Memory Address Map
      2. 31.2.2  Local Host Communication
        1. 31.2.2.1 Byte Accessibility Through PDI
        2. 31.2.2.2 Software Details for Operation Across Clock Domains
      3. 31.2.3  Debug Emulation Mode Operation
      4. 31.2.4  ESC SubSystem
        1. 31.2.4.1 CPU1 Bus Interface
        2. 31.2.4.2 CM Bus Interface
      5. 31.2.5  Interrupts and Interrupt Mapping
      6. 31.2.6  Power, Clocks, and Resets
        1. 31.2.6.1 Power
        2. 31.2.6.2 Clocking
        3. 31.2.6.3 Resets
          1. 31.2.6.3.1 Chip-Level Reset
          2. 31.2.6.3.2 EtherCAT Soft Resets
          3. 31.2.6.3.3 Reset Out (RESET_OUT)
      7. 31.2.7  LED Controls
      8. 31.2.8  Slave Node Configuration and EEPROM
      9. 31.2.9  General-Purpose Inputs and Outputs
        1. 31.2.9.1 General-Purpose Inputs
        2. 31.2.9.2 General-Purpose Output
      10. 31.2.10 Distributed Clocks – Sync and Latch
        1. 31.2.10.1 Clock Synchronization
        2. 31.2.10.2 SYNC Signals
          1. 31.2.10.2.1 Seeking Host Intervention
        3. 31.2.10.3 LATCH Signals
          1. 31.2.10.3.1 Timestamping
        4. 31.2.10.4 Device Control and Synchronization
          1. 31.2.10.4.1 Synchronization of PWM
          2. 31.2.10.4.2 ECAP SYNC Inputs
          3. 31.2.10.4.3 SYNC Signal Conditioning and Rerouting
    3. 31.3 Software Initialization Sequence and Allocating Ownership
    4. 31.4 ESC Configuration Constants
    5. 31.5 EtherCAT IP Registers
      1. 31.5.1 ECAT Base Address Table (C28)
      2. 31.5.2 ESCSS_REGS Registers
      3. 31.5.3 ESCSS_CONFIG_REGS Registers
      4. 31.5.4 ESC_SS Registers to Driverlib Functions
  34. 32Fast Serial Interface (FSI)
    1. 32.1 Introduction
      1. 32.1.1 FSI Related Collateral
      2. 32.1.2 FSI Features
    2. 32.2 System-level Integration
      1. 32.2.1 CPU Interface
      2. 32.2.2 Signal Description
        1. 32.2.2.1 Configuring Device Pins
      3. 32.2.3 FSI Interrupts
        1. 32.2.3.1 Transmitter Interrupts
        2. 32.2.3.2 Receiver Interrupts
        3. 32.2.3.3 Configuring Interrupts
        4. 32.2.3.4 Handling Interrupts
      4. 32.2.4 CLA Task Triggering
      5. 32.2.5 DMA Interface
      6. 32.2.6 External Frame Trigger Mux
    3. 32.3 FSI Functional Description
      1. 32.3.1  Introduction to Operation
      2. 32.3.2  FSI Transmitter Module
        1. 32.3.2.1 Initialization
        2. 32.3.2.2 FSI_TX Clocking
        3. 32.3.2.3 Transmitting Frames
          1. 32.3.2.3.1 Software Triggered Frames
          2. 32.3.2.3.2 Externally Triggered Frames
          3. 32.3.2.3.3 Ping Frame Generation
            1. 32.3.2.3.3.1 Automatic Ping Frames
            2. 32.3.2.3.3.2 Software Triggered Ping Frame
            3. 32.3.2.3.3.3 Externally Triggered Ping Frame
          4. 32.3.2.3.4 Transmitting Frames with DMA
        4. 32.3.2.4 Transmit Buffer Management
        5. 32.3.2.5 CRC Submodule
        6. 32.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 32.3.2.7 Reset
      3. 32.3.3  FSI Receiver Module
        1. 32.3.3.1  Initialization
        2. 32.3.3.2  FSI_RX Clocking
        3. 32.3.3.3  Receiving Frames
          1. 32.3.3.3.1 Receiving Frames with DMA
        4. 32.3.3.4  Ping Frame Watchdog
        5. 32.3.3.5  Frame Watchdog
        6. 32.3.3.6  Delay Line Control
        7. 32.3.3.7  Buffer Management
        8. 32.3.3.8  CRC Submodule
        9. 32.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 32.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 32.3.3.11 FSI_RX Reset
      4. 32.3.4  Frame Format
        1. 32.3.4.1 FSI Frame Phases
        2. 32.3.4.2 Frame Types
          1. 32.3.4.2.1 Ping Frames
          2. 32.3.4.2.2 Error Frames
          3. 32.3.4.2.3 Data Frames
        3. 32.3.4.3 Multi-Lane Transmission
      5. 32.3.5  Flush Sequence
      6. 32.3.6  Internal Loopback
      7. 32.3.7  CRC Generation
      8. 32.3.8  ECC Module
      9. 32.3.9  Tag Matching
      10. 32.3.10 TDM Configurations
      11. 32.3.11 FSI-SPI Compatibility Mode
        1. 32.3.11.1 Available SPI Modes
          1. 32.3.11.1.1 FSITX as SPI Master, Transmit Only
            1. 32.3.11.1.1.1 Initialization
            2. 32.3.11.1.1.2 Operation
          2. 32.3.11.1.2 FSIRX as SPI Slave, Receive Only
            1. 32.3.11.1.2.1 Initialization
            2. 32.3.11.1.2.2 Operation
          3. 32.3.11.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Master
            1. 32.3.11.1.3.1 Initialization
            2. 32.3.11.1.3.2 Operation
    4. 32.4 FSI Programing Guide
      1. 32.4.1 Establishing the Communication Link
        1. 32.4.1.1 Establishing the Communication Link from the Master Device
        2. 32.4.1.2 Establishing the Communication Link from the Slave Device
      2. 32.4.2 Register Protection
      3. 32.4.3 Emulation Mode
    5. 32.5 Software
      1. 32.5.1 FSI Examples
        1. 32.5.1.1  FSI Multi-Rx Tag-Match - C28X_DUAL
        2. 32.5.1.2  FSI Loopback:CPU Control
        3. 32.5.1.3  FSI Multi-Rx Tag-Match - C28X_DUAL
        4. 32.5.1.4  FSI Loopback CLA control
        5. 32.5.1.5  FSI DMA frame transfers:DMA Control
        6. 32.5.1.6  FSI data transfer by external trigger
        7. 32.5.1.7  FSI data transfers upon CPU Timer event
        8. 32.5.1.8  FSI and SPI communication(fsi_ex6_spi_main_tx)
        9. 32.5.1.9  FSI and SPI communication(fsi_ex7_spi_remote_rx)
        10. 32.5.1.10 FSI P2Point Connection:Rx Side
        11. 32.5.1.11 FSI P2Point Connection:Tx Side
        12. 32.5.1.12 FSI star connection topology example. FSI communication using CPU control
        13. 32.5.1.13 FSI daisy chain topology, lead device example
        14. 32.5.1.14 FSI daisy chain topology, node device example
    6. 32.6 FSI Registers
      1. 32.6.1 FSI Base Address Table (C28)
      2. 32.6.2 FSI_TX_REGS Registers
      3. 32.6.3 FSI_RX_REGS Registers
      4. 32.6.4 FSI Registers to Driverlib Functions
  35. 33Inter-Integrated Circuit Module (I2C)
    1. 33.1 Introduction
      1. 33.1.1 I2C Related Collateral
      2. 33.1.2 Features
      3. 33.1.3 Features Not Supported
      4. 33.1.4 Functional Overview
      5. 33.1.5 Clock Generation
      6. 33.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 33.1.6.1 Formula for the Master Clock Period
    2. 33.2 Configuring Device Pins
    3. 33.3 I2C Module Operational Details
      1. 33.3.1  Input and Output Voltage Levels
      2. 33.3.2  Selecting Pullup Resistors
      3. 33.3.3  Data Validity
      4. 33.3.4  Operating Modes
      5. 33.3.5  I2C Module START and STOP Conditions
      6. 33.3.6  Non-repeat Mode versus Repeat Mode
      7. 33.3.7  Serial Data Formats
        1. 33.3.7.1 7-Bit Addressing Format
        2. 33.3.7.2 10-Bit Addressing Format
        3. 33.3.7.3 Free Data Format
        4. 33.3.7.4 Using a Repeated START Condition
      8. 33.3.8  Clock Synchronization
      9. 33.3.9  Arbitration
      10. 33.3.10 Digital Loopback Mode
      11. 33.3.11 NACK Bit Generation
    4. 33.4 Interrupt Requests Generated by the I2C Module
      1. 33.4.1 Basic I2C Interrupt Requests
      2. 33.4.2 I2C FIFO Interrupts
    5. 33.5 Resetting or Disabling the I2C Module
    6. 33.6 Software
      1. 33.6.1 I2C Examples
        1. 33.6.1.1  C28x-I2C Library source file for FIFO interrupts
        2. 33.6.1.2  C28x-I2C Library source file for FIFO using polling
        3. 33.6.1.3  C28x-I2C Library source file for FIFO interrupts
        4. 33.6.1.4  I2C Loopback with Slave Receive Interrupt - CM
        5. 33.6.1.5  I2C Digital Loopback with FIFO Interrupts
        6. 33.6.1.6  I2C EEPROM
        7. 33.6.1.7  I2C Digital External Loopback with FIFO Interrupts
        8. 33.6.1.8  I2C EEPROM
        9. 33.6.1.9  I2C controller target communication using FIFO interrupts
        10. 33.6.1.10 I2C EEPROM
    7. 33.7 I2C Registers
      1. 33.7.1 I2C Base Address Table (C28)
      2. 33.7.2 I2C_REGS Registers
      3. 33.7.3 I2C Registers to Driverlib Functions
  36. 34Multichannel Buffered Serial Port (McBSP)
    1. 34.1  Introduction
      1. 34.1.1 MCBSP Related Collateral
      2. 34.1.2 Features of the McBSPs
      3. 34.1.3 McBSP Pins/Signals
        1. 34.1.3.1 McBSP Generic Block Diagram
    2. 34.2  Configuring Device Pins
    3. 34.3  McBSP Operation
      1. 34.3.1 Data Transfer Process of McBSPs
        1. 34.3.1.1 Data Transfer Process for Word Length of 8, 12, or 16 Bits
        2. 34.3.1.2 Data Transfer Process for Word Length of 20, 24, or 32 Bits
      2. 34.3.2 Companding (Compressing and Expanding) Data
        1. 34.3.2.1 Companding Formats
        2. 34.3.2.2 Capability to Compand Internal Data
        3. 34.3.2.3 Reversing Bit Order: Option to Transfer LSB First
      3. 34.3.3 Clocking and Framing Data
        1. 34.3.3.1 Clocking
        2. 34.3.3.2 Serial Words
        3. 34.3.3.3 Frames and Frame Synchronization
        4. 34.3.3.4 Generating Transmit and Receive Interrupts
          1. 34.3.3.4.1 Detecting Frame-Synchronization Pulses, Even in Reset State
        5. 34.3.3.5 Ignoring Frame-Synchronization Pulses
        6. 34.3.3.6 Frame Frequency
        7. 34.3.3.7 Maximum Frame Frequency
      4. 34.3.4 Frame Phases
        1. 34.3.4.1 Number of Phases, Words, and Bits Per Frame
        2. 34.3.4.2 Single-Phase Frame Example
        3. 34.3.4.3 Dual-Phase Frame Example
        4. 34.3.4.4 Implementing the AC97 Standard With a Dual-Phase Frame
      5. 34.3.5 McBSP Reception
      6. 34.3.6 McBSP Transmission
      7. 34.3.7 Interrupts and DMA Events Generated by a McBSP
    4. 34.4  McBSP Sample Rate Generator
      1. 34.4.1 Block Diagram
        1. 34.4.1.1 Clock Generation in the Sample Rate Generator
        2. 34.4.1.2 Choosing an Input Clock
        3. 34.4.1.3 Choosing a Polarity for the Input Clock
        4. 34.4.1.4 Choosing a Frequency for the Output Clock (CLKG)
          1. 34.4.1.4.1 CLKG Frequency
        5. 34.4.1.5 Keeping CLKG Synchronized to External MCLKR
      2. 34.4.2 Frame Synchronization Generation in the Sample Rate Generator
        1. 34.4.2.1 Choosing the Width of the Frame-Synchronization Pulse on FSG
        2. 34.4.2.2 Controlling the Period Between the Starting Edges of Frame-Synchronization Pulses on FSG
        3. 34.4.2.3 Keeping FSG Synchronized to an External Clock
      3. 34.4.3 Synchronizing Sample Rate Generator Outputs to an External Clock
        1. 34.4.3.1 Operating the Transmitter Synchronously with the Receiver
        2. 34.4.3.2 Synchronization Examples
      4. 34.4.4 Reset and Initialization Procedure for the Sample Rate Generator
    5. 34.5  McBSP Exception/Error Conditions
      1. 34.5.1 Types of Errors
      2. 34.5.2 Overrun in the Receiver
        1. 34.5.2.1 Example of Overrun Condition
        2. 34.5.2.2 Example of Preventing Overrun Condition
      3. 34.5.3 Unexpected Receive Frame-Synchronization Pulse
        1. 34.5.3.1 Possible Responses to Receive Frame-Synchronization Pulses
        2. 34.5.3.2 Example of Unexpected Receive Frame-Synchronization Pulse
        3. 34.5.3.3 Preventing Unexpected Receive Frame-Synchronization Pulses
      4. 34.5.4 Overwrite in the Transmitter
        1. 34.5.4.1 Example of Overwrite Condition
        2. 34.5.4.2 Preventing Overwrites
      5. 34.5.5 Underflow in the Transmitter
        1. 34.5.5.1 Example of the Underflow Condition
        2. 34.5.5.2 Example of Preventing Underflow Condition
      6. 34.5.6 Unexpected Transmit Frame-Synchronization Pulse
        1. 34.5.6.1 Possible Responses to Transmit Frame-Synchronization Pulses
        2. 34.5.6.2 Example of Unexpected Transmit Frame-Synchronization Pulse
        3. 34.5.6.3 Preventing Unexpected Transmit Frame-Synchronization Pulses
    6. 34.6  Multichannel Selection Modes
      1. 34.6.1 Channels, Blocks, and Partitions
      2. 34.6.2 Multichannel Selection
      3. 34.6.3 Configuring a Frame for Multichannel Selection
      4. 34.6.4 Using Two Partitions
        1. 34.6.4.1 Assigning Blocks to Partitions A and B
        2. 34.6.4.2 Reassigning Blocks During Reception/Transmission
      5. 34.6.5 Using Eight Partitions
      6. 34.6.6 Receive Multichannel Selection Mode
      7. 34.6.7 Transmit Multichannel Selection Modes
        1. 34.6.7.1 Disabling/Enabling Versus Masking/Unmasking
        2. 34.6.7.2 Activity on McBSP Pins for Different Values of XMCM
      8. 34.6.8 Using Interrupts Between Block Transfers
    7. 34.7  SPI Operation Using the Clock Stop Mode
      1. 34.7.1 SPI Protocol
      2. 34.7.2 Clock Stop Mode
      3. 34.7.3 Enable and Configure the Clock Stop Mode
      4. 34.7.4 Clock Stop Mode Timing Diagrams
      5. 34.7.5 Procedure for Configuring a McBSP for SPI Operation
      6. 34.7.6 McBSP as the SPI Master
      7. 34.7.7 McBSP as an SPI Slave
    8. 34.8  Receiver Configuration
      1. 34.8.1  Programming the McBSP Registers for the Desired Receiver Operation
      2. 34.8.2  Resetting and Enabling the Receiver
        1. 34.8.2.1 Reset Considerations
      3. 34.8.3  Set the Receiver Pins to Operate as McBSP Pins
      4. 34.8.4  Digital Loopback Mode
      5. 34.8.5  Clock Stop Mode
      6. 34.8.6  Receive Multichannel Selection Mode
      7. 34.8.7  Receive Frame Phases
      8. 34.8.8  Receive Word Lengths
        1. 34.8.8.1 Word Length Bits
      9. 34.8.9  Receive Frame Length
        1. 34.8.9.1 Selected Frame Length
      10. 34.8.10 Receive Frame-Synchronization Ignore Function
        1. 34.8.10.1 Unexpected Frame-Synchronization Pulses and the Frame-Synchronization Ignore Function
        2. 34.8.10.2 Examples of Effects of RFIG
      11. 34.8.11 Receive Companding Mode
        1. 34.8.11.1 Companding
        2. 34.8.11.2 Format of Expanded Data
        3. 34.8.11.3 Companding Internal Data
        4. 34.8.11.4 Option to Receive LSB First
      12. 34.8.12 Receive Data Delay
        1. 34.8.12.1 Data Delay
        2. 34.8.12.2 0-Bit Data Delay
        3. 34.8.12.3 2-Bit Data Delay
      13. 34.8.13 Receive Sign-Extension and Justification Mode
        1. 34.8.13.1 Sign-Extension and the Justification
      14. 34.8.14 Receive Interrupt Mode
      15. 34.8.15 Receive Frame-Synchronization Mode
        1. 34.8.15.1 Receive Frame-Synchronization Modes
      16. 34.8.16 Receive Frame-Synchronization Polarity
        1. 34.8.16.1 Frame-Synchronization Pulses, Clock Signals, and Their Polarities
        2. 34.8.16.2 Frame-Synchronization Period and the Frame-Synchronization Pulse Width
      17. 34.8.17 Receive Clock Mode
        1. 34.8.17.1 Selecting a Source for the Receive Clock and a Data Direction for the MCLKR Pin
      18. 34.8.18 Receive Clock Polarity
        1. 34.8.18.1 Frame Synchronization Pulses, Clock Signals, and Their Polarities
      19. 34.8.19 SRG Clock Divide-Down Value
        1. 34.8.19.1 Sample Rate Generator Clock Divider
      20. 34.8.20 SRG Clock Synchronization Mode
      21. 34.8.21 SRG Clock Mode (Choose an Input Clock)
      22. 34.8.22 SRG Input Clock Polarity
        1. 34.8.22.1 Using CLKXP/CLKRP to Choose an Input Clock Polarity
    9. 34.9  Transmitter Configuration
      1. 34.9.1  Programming the McBSP Registers for the Desired Transmitter Operation
      2. 34.9.2  Resetting and Enabling the Transmitter
        1. 34.9.2.1 Reset Considerations
      3. 34.9.3  Set the Transmitter Pins to Operate as McBSP Pins
      4. 34.9.4  Digital Loopback Mode
      5. 34.9.5  Clock Stop Mode
      6. 34.9.6  Transmit Multichannel Selection Mode
      7. 34.9.7  XCERs Used in the Transmit Multichannel Selection Mode
      8. 34.9.8  Transmit Frame Phases
      9. 34.9.9  Transmit Word Lengths
        1. 34.9.9.1 Word Length Bits
      10. 34.9.10 Transmit Frame Length
        1. 34.9.10.1 Selected Frame Length
      11. 34.9.11 Enable/Disable the Transmit Frame-Synchronization Ignore Function
        1. 34.9.11.1 Unexpected Frame-Synchronization Pulses and Frame-Synchronization Ignore
        2. 34.9.11.2 Examples Showing the Effects of XFIG
      12. 34.9.12 Transmit Companding Mode
        1. 34.9.12.1 Companding
        2. 34.9.12.2 Format for Data To Be Compressed
        3. 34.9.12.3 Capability to Compand Internal Data
        4. 34.9.12.4 Option to Transmit LSB First
      13. 34.9.13 Transmit Data Delay
        1. 34.9.13.1 Data Delay
        2. 34.9.13.2 0-Bit Data Delay
        3. 34.9.13.3 2-Bit Data Delay
      14. 34.9.14 Transmit DXENA Mode
      15. 34.9.15 Transmit Interrupt Mode
      16. 34.9.16 Transmit Frame-Synchronization Mode
        1. 34.9.16.1 Other Considerations
      17. 34.9.17 Transmit Frame-Synchronization Polarity
        1. 34.9.17.1 Frame Synchronization Pulses, Clock Signals, and Their Polarities
      18. 34.9.18 SRG Frame-Synchronization Period and Pulse Width
        1. 34.9.18.1 Frame-Synchronization Period and Frame-Synchronization Pulse Width
      19. 34.9.19 Transmit Clock Mode
        1. 34.9.19.1 Selecting a Source for the Transmit Clock and a Data Direction for the MCLKX pin
        2. 34.9.19.2 Other Considerations
      20. 34.9.20 Transmit Clock Polarity
        1. 34.9.20.1 Frame Synchronization Pulses, Clock Signals, and Their Polarities
    10. 34.10 Emulation and Reset Considerations
      1. 34.10.1 McBSP Emulation Mode
      2. 34.10.2 Resetting and Initializing McBSPs
        1. 34.10.2.1 McBSP Pin States: DSP Reset Versus Receiver/Transmitter Reset
        2. 34.10.2.2 Device Reset, McBSP Reset, and Sample Rate Generator Reset
        3. 34.10.2.3 McBSP Initialization Procedure
        4. 34.10.2.4 Resetting the Transmitter While the Receiver is Running
          1. 34.10.2.4.1 Resetting and Configuring McBSP Transmitter While McBSP Receiver Running
    11. 34.11 Data Packing Examples
      1. 34.11.1 Data Packing Using Frame Length and Word Length
      2. 34.11.2 Data Packing Using Word Length and the Frame-Synchronization Ignore Function
    12. 34.12 Interrupt Generation
      1. 34.12.1 McBSP Receive Interrupt Generation
      2. 34.12.2 McBSP Transmit Interrupt Generation
      3. 34.12.3 Error Flags
    13. 34.13 McBSP Modes
    14. 34.14 Special Case: External Device is the Transmit Frame Master
    15. 34.15 Software
      1. 34.15.1 MCBSP Examples
        1. 34.15.1.1 Pin Setup for McBSP module
        2. 34.15.1.2 McBSP loopback example
        3. 34.15.1.3 McBSP loopback with DMA example.
        4. 34.15.1.4 McBSP loopback with interrupts example
        5. 34.15.1.5 McBSP loopback with interrupts example
        6. 34.15.1.6 McBSP loopback example using SPI mode
        7. 34.15.1.7 McBSP external loopback example
        8. 34.15.1.8 McBSP external loopback example using SPI mode
        9. 34.15.1.9 McBSP TDM-8 Test
    16. 34.16 McBSP Registers
      1. 34.16.1 MCBSP Base Address Table (C28)
      2. 34.16.2 McBSP_REGS Registers
      3. 34.16.3 MCBSP Registers to Driverlib Functions
  37. 35Power Management Bus Module (PMBus)
    1. 35.1 Introduction
      1. 35.1.1 PMBUS Related Collateral
      2. 35.1.2 Features
      3. 35.1.3 Block Diagram
    2. 35.2 Configuring Device Pins
    3. 35.3 Slave Mode Operation
      1. 35.3.1 Configuration
      2. 35.3.2 Message Handling
        1. 35.3.2.1  Quick Command
        2. 35.3.2.2  Send Byte
        3. 35.3.2.3  Receive Byte
        4. 35.3.2.4  Write Byte and Write Word
        5. 35.3.2.5  Read Byte and Read Word
        6. 35.3.2.6  Process Call
        7. 35.3.2.7  Block Write
        8. 35.3.2.8  Block Read
        9. 35.3.2.9  Block Write-Block Read Process Call
        10. 35.3.2.10 Alert Response
        11. 35.3.2.11 Extended Command
        12. 35.3.2.12 Group Command
    4. 35.4 Master Mode Operation
      1. 35.4.1 Configuration
      2. 35.4.2 Message Handling
        1. 35.4.2.1  Quick Command
        2. 35.4.2.2  Send Byte
        3. 35.4.2.3  Receive Byte
        4. 35.4.2.4  Write Byte and Write Word
        5. 35.4.2.5  Read Byte and Read Word
        6. 35.4.2.6  Process Call
        7. 35.4.2.7  Block Write
        8. 35.4.2.8  Block Read
        9. 35.4.2.9  Block Write-Block Read Process Call
        10. 35.4.2.10 Alert Response
        11. 35.4.2.11 Extended Command
        12. 35.4.2.12 Group Command
    5. 35.5 PMBus Registers
      1. 35.5.1 PMBUS Base Address Table (C28)
      2. 35.5.2 PMBUS_REGS Registers
      3. 35.5.3 PMBUS Registers to Driverlib Functions
  38. 36Serial Communications Interface (SCI)
    1. 36.1  Introduction
      1. 36.1.1 Features
      2. 36.1.2 SCI Related Collateral
      3. 36.1.3 Block Diagram
    2. 36.2  Architecture
    3. 36.3  SCI Module Signal Summary
    4. 36.4  Configuring Device Pins
    5. 36.5  Multiprocessor and Asynchronous Communication Modes
    6. 36.6  SCI Programmable Data Format
    7. 36.7  SCI Multiprocessor Communication
      1. 36.7.1 Recognizing the Address Byte
      2. 36.7.2 Controlling the SCI TX and RX Features
      3. 36.7.3 Receipt Sequence
    8. 36.8  Idle-Line Multiprocessor Mode
      1. 36.8.1 Idle-Line Mode Steps
      2. 36.8.2 Block Start Signal
      3. 36.8.3 Wake-Up Temporary (WUT) Flag
        1. 36.8.3.1 Sending a Block Start Signal
      4. 36.8.4 Receiver Operation
    9. 36.9  Address-Bit Multiprocessor Mode
      1. 36.9.1 Sending an Address
    10. 36.10 SCI Communication Format
      1. 36.10.1 Receiver Signals in Communication Modes
      2. 36.10.2 Transmitter Signals in Communication Modes
    11. 36.11 SCI Port Interrupts
      1. 36.11.1 Break Detect
    12. 36.12 SCI Baud Rate Calculations
    13. 36.13 SCI Enhanced Features
      1. 36.13.1 SCI FIFO Description
      2. 36.13.2 SCI Auto-Baud
      3. 36.13.3 Autobaud-Detect Sequence
    14. 36.14 Software
      1. 36.14.1 SCI Examples
        1. 36.14.1.1 Tune Baud Rate via UART Example
        2. 36.14.1.2 SCI FIFO Digital Loop Back
        3. 36.14.1.3 Watchdog Reset - C28X_DUAL
        4. 36.14.1.4 NMI handling - C28X_DUAL
        5. 36.14.1.5 SCI Digital Loop Back with Interrupts
        6. 36.14.1.6 SCI Echoback
        7. 36.14.1.7 stdout redirect example
    15. 36.15 SCI Registers
      1. 36.15.1 SCI Base Address Table (C28)
      2. 36.15.2 SCI_REGS Registers
      3. 36.15.3 SCI Registers to Driverlib Functions
  39. 37Serial Peripheral Interface (SPI)
    1. 37.1 Introduction
      1. 37.1.1 Features
      2. 37.1.2 SPI Related Collateral
      3. 37.1.3 Block Diagram
    2. 37.2 System-Level Integration
      1. 37.2.1 SPI Module Signals
      2. 37.2.2 Configuring Device Pins
        1. 37.2.2.1 GPIOs Required for High-Speed Mode
      3. 37.2.3 SPI Interrupts
      4. 37.2.4 DMA Support
    3. 37.3 SPI Operation
      1. 37.3.1  Introduction to Operation
      2. 37.3.2  Master Mode
      3. 37.3.3  Slave Mode
      4. 37.3.4  Data Format
        1. 37.3.4.1 Transmission of Bit from SPIRXBUF
      5. 37.3.5  Baud Rate Selection
        1. 37.3.5.1 Baud Rate Determination
        2. 37.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 37.3.6  SPI Clocking Schemes
      7. 37.3.7  SPI FIFO Description
      8. 37.3.8  SPI DMA Transfers
        1. 37.3.8.1 Transmitting Data Using SPI with DMA
        2. 37.3.8.2 Receiving Data Using SPI with DMA
      9. 37.3.9  SPI High-Speed Mode
      10. 37.3.10 SPI 3-Wire Mode Description
    4. 37.4 Programming Procedure
      1. 37.4.1 Initialization Upon Reset
      2. 37.4.2 Configuring the SPI
      3. 37.4.3 Configuring the SPI for High-Speed Mode
      4. 37.4.4 Data Transfer Example
      5. 37.4.5 SPI 3-Wire Mode Code Examples
        1. 37.4.5.1 3-Wire Master Mode Transmit
        2.       1924
          1. 37.4.5.2.1 3-Wire Master Mode Receive
        3.       1926
          1. 37.4.5.2.1 3-Wire Slave Mode Transmit
        4.       1928
          1. 37.4.5.2.1 3-Wire Slave Mode Receive
      6. 37.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 37.5 Software
      1. 37.5.1 SPI Examples
        1. 37.5.1.1 SPI Digital Loopback
        2. 37.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 37.5.1.3 SPI Digital External Loopback without FIFO Interrupts
        4. 37.5.1.4 SPI Digital External Loopback with FIFO Interrupts
        5. 37.5.1.5 SPI Digital Loopback with DMA
        6. 37.5.1.6 SPI EEPROM
        7. 37.5.1.7 SPI DMA EEPROM
    6. 37.6 SPI Registers
      1. 37.6.1 SPI Base Address Table (C28)
      2. 37.6.2 SPI_REGS Registers
      3. 37.6.3 SPI Registers to Driverlib Functions
  40. 38Universal Serial Bus (USB) Controller
    1. 38.1 Introduction
      1. 38.1.1 Features
      2. 38.1.2 USB Related Collateral
      3. 38.1.3 Block Diagram
        1. 38.1.3.1 Signal Description
        2. 38.1.3.2 VBus Recommendations
    2. 38.2 Functional Description
      1. 38.2.1 Operation as a Device
        1. 38.2.1.1 Control and Configurable Endpoints
          1. 38.2.1.1.1 IN Transactions as a Device
          2. 38.2.1.1.2 Out Transactions as a Device
          3. 38.2.1.1.3 Scheduling
          4. 38.2.1.1.4 Additional Actions
          5. 38.2.1.1.5 Device Mode Suspend
          6. 38.2.1.1.6 Start of Frame
          7. 38.2.1.1.7 USB Reset
          8. 38.2.1.1.8 Connect/Disconnect
      2. 38.2.2 Operation as a Host
        1. 38.2.2.1 Endpoint Registers
        2. 38.2.2.2 IN Transactions as a Host
        3. 38.2.2.3 OUT Transactions as a Host
        4. 38.2.2.4 Transaction Scheduling
        5. 38.2.2.5 USB Hubs
        6. 38.2.2.6 Babble
        7. 38.2.2.7 Host SUSPEND
        8. 38.2.2.8 USB RESET
        9. 38.2.2.9 Connect/Disconnect
      3. 38.2.3 DMA Operation
      4. 38.2.4 Address/Data Bus Bridge
    3. 38.3 Initialization and Configuration
      1. 38.3.1 Pin Configuration
      2. 38.3.2 Endpoint Configuration
    4. 38.4 USB Global Interrupts
    5. 38.5 Software
      1. 38.5.1 USB Examples
        1. 38.5.1.1  Wrapper for interrupt functions and USB support pins. - CM
        2. 38.5.1.2  USB CDC serial example
        3. 38.5.1.3  USB Composite Serial Device (usb_dev_cserial) - CM
        4. 38.5.1.4  USB HID Mouse Device
        5. 38.5.1.5  USB HID Mouse Device - CM
        6. 38.5.1.6  Data structures defining the USB mouse device. - CM
        7. 38.5.1.7  USB Device Keyboard
        8. 38.5.1.8  USB HID Keyboard Device (usb_dev_keyboard) - CM
        9. 38.5.1.9  Data structures defining the USB keyboard device. - CM
        10. 38.5.1.10 Data structures defining this bulk USB device. - CM
        11. 38.5.1.11 USB Generic Bulk Device (usb_dev_bulk) - CM
        12. 38.5.1.12 USB Generic Bulk Device
        13. 38.5.1.13 USB HID Mouse Host
        14. 38.5.1.14 USB HID Mouse Host (usb_host_mouse) - CM
        15. 38.5.1.15 USB HID Keyboard Host (usb_host_keyboard) - CM
        16. 38.5.1.16 USB HID Keyboard Host
        17. 38.5.1.17 USB Mass Storage Class Host
        18. 38.5.1.18 USB Mass Storage Class Host (usb_host_msc) - CM
        19. 38.5.1.19 USB Dual Detect
        20. 38.5.1.20 Data structures defining this bulk USB device. - CM
        21. 38.5.1.21 USB Throughput Bulk Device Example (usb_ex9_throughput_dev_bulk) - CM
        22. 38.5.1.22 USB HUB Host example - CM
        23. 38.5.1.23 USB Throughput Bulk Device Example (usb_ex9_throughput_dev_bulk)
        24. 38.5.1.24 USB HUB Host example
    6. 38.6 USB Registers
      1. 38.6.1 USB Base Address Table (C28)
      2. 38.6.2 USB_REGS Registers
      3. 38.6.3 USB Registers to Driverlib Functions
  41. 39► CONNECTIVITY MANAGER (CM)
    1. 39.1 Technical Reference Manual Overview
  42. 40Connectivity Manager Subsystem
    1. 40.1 Connectivity Manager Overview
    2. 40.2 Connectivity Manager Functional Block Diagram
    3. 40.3 Arm® Cortex®-M4 Processor Core Overview
  43. 41Connectivity Manager System Control and Interrupts
    1. 41.1  Introduction
    2. 41.2  Reset
      1. 41.2.1 CPU1 SYSRS
      2. 41.2.2 System Reset Request (CMSYSRESETREQ)
      3. 41.2.3 CM NMI Watchdog Reset (CMNMIWDRSTn)
      4. 41.2.4 CM Secure Code Copy Reset (CMSCCRESETn)
    3. 41.3  CM Clocking
      1. 41.3.1 CM Clock Sources
      2. 41.3.2 CM Derived Clocks
      3. 41.3.3 CM Device Clock Domains
        1. 41.3.3.1 Connectivity Manager Clock (CMCLK)
        2. 41.3.3.2 CM Peripheral Subsystem Clock (CM.PERx.SYSCLK)
        3. 41.3.3.3 MCAN Bit Clock
      4. 41.3.4 CM Clock Connectivity
    4. 41.4  SysTick
    5. 41.5  Watchdog Timer
    6. 41.6  Exceptions and NMI
      1. 41.6.1 CM Subsystem Nested Vectored Interrupt Controller
      2. 41.6.2 CM Subsystem Exceptions Handling
      3. 41.6.3 CM Subsystem Non-Maskable Interrupt (CMNMI) Module
        1. 41.6.3.1 CM Subsystem NMI Sources
          1. 41.6.3.1.1 RAM/ROM Uncorrectable Error
          2. 41.6.3.1.2 Reset Request from EtherCAT
          3. 41.6.3.1.3 Clock Fail Condition
          4. 41.6.3.1.4 MCAN Uncorrectable Error
          5. 41.6.3.1.5 CM Windowed Watchdog Timed Out
          6. 41.6.3.1.6 Flash Uncorrectable Error
        2. 41.6.3.2 CM Subsystem NMIWD Module
          1. 41.6.3.2.1 Emulation Considerations
        3. 41.6.3.3 Handling of CMNMI
      4. 41.6.4 CM Interrupts/NMI to CPU1/CPU2
    7. 41.7  Nested Vectored Interrupt Controller (NVIC)
      1. 41.7.1 Level-Sensitive and Pulse Interrupts
      2. 41.7.2 Hardware and Software Control of Interrupts
      3. 41.7.3 NVIC Registers Access
    8. 41.8  32-Bit CM CPU Timers 0/1/2
    9. 41.9  Memory Controller Module
      1. 41.9.1 Functional Description
        1. 41.9.1.1 Dedicated RAM
        2. 41.9.1.2 Shared RAM
        3. 41.9.1.3 MSG RAM
        4. 41.9.1.4 ROM
        5. 41.9.1.5 Interleaving
        6. 41.9.1.6 Access Arbitration
        7. 41.9.1.7 Access Protection
        8. 41.9.1.8 Memory Error Detection, Correction and Error Handling
          1. 41.9.1.8.1 Error Detection and Correction
          2. 41.9.1.8.2 Error Handling
          3. 41.9.1.8.3 Application Test Hooks for Error Detection and Correction
          4. 41.9.1.8.4 ROM Test
        9. 41.9.1.9 RAM Initialization
    10. 41.10 Memory Protection Unit (MPU)
      1. 41.10.1 Functional Description
      2. 41.10.2 Overlapping Regions
      3. 41.10.3 Sub-Regions
      4. 41.10.4 Programmers Model
    11. 41.11 Debug and Trace
      1. 41.11.1 Trace Port Interface Unit
    12. 41.12 CM-SysCtrl Registers
      1. 41.12.1  CM System Control Base Addresses
      2. 41.12.2  CM_MEMCFG_REGS Registers
      3. 41.12.3  CM_MEMORYDIAGERROR_REGS Registers
      4. 41.12.4  CM_MEMORYERROR_REGS Registers
      5. 41.12.5  CMSYSCTL_REGS Registers
      6. 41.12.6  CM_CPUTIMER_REGS Registers
      7. 41.12.7  MPU_REGS Registers
      8. 41.12.8  CM_NMI_INTRUPT_REGS Registers
      9. 41.12.9  NVIC Registers
      10. 41.12.10 SCB Registers
      11. 41.12.11 CSFR Registers
      12. 41.12.12 SYSTICK Registers
      13. 41.12.13 MPU Registers
      14. 41.12.14 CM_WD_REGS Registers
  44. 42Advanced Encryption Standard (AES) Accelerator
    1. 42.1 Introduction
      1. 42.1.1 AES Block Diagram
        1. 42.1.1.1 Interfaces
        2. 42.1.1.2 AES Subsystem
        3. 42.1.1.3 AES Wide-Bus Engine
      2. 42.1.2 AES Algorithm
    2. 42.2 AES Operating Modes
      1. 42.2.1  GCM Operation
      2. 42.2.2  CCM Operation
      3. 42.2.3  XTS Operation
      4. 42.2.4  ECB Feedback Mode
      5. 42.2.5  CBC Feedback Mode
      6. 42.2.6  CTR and ICM Feedback Modes
      7. 42.2.7  CFB Mode
      8. 42.2.8  F8 Mode
      9. 42.2.9  F9 Operation
      10. 42.2.10 CBC-MAC Operation
    3. 42.3 Extended and Combined Modes of Operations
      1. 42.3.1 GCM Protocol Operation
      2. 42.3.2 CCM Protocol Operation
      3. 42.3.3 Hardware Requests
    4. 42.4 AES Module Programming Guide
      1. 42.4.1 AES Low-Level Programming Models
        1. 42.4.1.1 Global Initialization
        2. 42.4.1.2 AES Operating Modes Configuration
        3. 42.4.1.3 AES Mode Configurations
        4. 42.4.1.4 AES Events Servicing
    5. 42.5 Software
      1. 42.5.1 AES Examples
        1. 42.5.1.1 AES ECB Encryption Example (CM) - CM
        2. 42.5.1.2 AES ECB De-cryption Example (CM) - CM
        3. 42.5.1.3 AES GCM Encryption Example (CM) - CM
        4. 42.5.1.4 AES GCM Decryption Example (CM) - CM
    6. 42.6 AES Registers
      1. 42.6.1 AES Base Addresses
      2. 42.6.2 AES_SS_REGS Registers
      3. 42.6.3 AES_REGS Registers
  45. 43Ethernet Media Access Controller (EMAC)
    1. 43.1 Introduction
      1. 43.1.1 Standard Compliance
      2. 43.1.2 MAC Features
        1. 43.1.2.1 MAC Tx and Rx Features
        2. 43.1.2.2 MAC Tx Features
        3. 43.1.2.3 MAC Rx Features
    2. 43.2 System Level Integration
      1. 43.2.1 Ethernet Signal Connection and Description
        1. 43.2.1.1 MII Interface Signals
        2. 43.2.1.2 RMII Interface Signals
        3. 43.2.1.3 RevMII Interface Signals
        4. 43.2.1.4 Pulse Per Second Signals
      2. 43.2.2 Configuring Device Pins
      3. 43.2.3 MAC Interface Selection
      4. 43.2.4 Clocks for Ethernet Module
      5. 43.2.5 RMII Mode Clocking
      6. 43.2.6 RevMII Mode Clocking
      7. 43.2.7 Configuring Trigger Sources for Time Stamping
        1. 43.2.7.1 Software Trigger for Time Stamping
      8. 43.2.8 Ethernet Interrupts
    3. 43.3 Features
      1. 43.3.1 Multiple Channels and Queues Support
        1. 43.3.1.1 Multiple Queues and Channels in Transmit Path
        2. 43.3.1.2 Multiple Queues and Channels in Receive Path
        3. 43.3.1.3 Rx Queue to DMA Mapping
        4. 43.3.1.4 Selection of Tag Priorities Assigned to Tx and Rx Queues
        5. 43.3.1.5 Rx Side Routing from MAC to Queues
      2. 43.3.2 IEEE 1588 Timestamp Support
        1. 43.3.2.1 Feature Description
          1. 43.3.2.1.1 Clock Types
            1. 43.3.2.1.1.1 Peer-to-Peer Transparent Clock (P2PTC) Message Support
            2. 43.3.2.1.1.2 Timestamp Correction
            3. 43.3.2.1.1.3 Ingress Correction
            4. 43.3.2.1.1.4 Egress Correction
            5. 43.3.2.1.1.5 Frequency Range of Reference Timing Clock
          2. 43.3.2.1.2 Maximum PTP Clock Frequency
          3. 43.3.2.1.3 Minimum PTP Clock Frequency
          4. 43.3.2.1.4 PTP Processing and Control
          5. 43.3.2.1.5 PTP Packets Over IPv4
          6. 43.3.2.1.6 PTP Frames Over IPv6
          7. 43.3.2.1.7 PTP Packets Over Ethernet
          8. 43.3.2.1.8 Transmit Path Functions
          9. 43.3.2.1.9 Receive Path Functions
        2. 43.3.2.2 IEEE 1588 System Time Source
          1. 43.3.2.2.1 External Timestamp Input
          2. 43.3.2.2.2 Internal Reference Time
          3. 43.3.2.2.3 System Time Register Module
        3. 43.3.2.3 IEEE 1588 Higher Word Register
        4. 43.3.2.4 IEEE 1588 Auxillary Snapshot
        5. 43.3.2.5 Flexible Pulse-Per-Second Output
          1. 43.3.2.5.1 PPS Start or Stop Time
          2. 43.3.2.5.2 PPS Width and Interval
      3. 43.3.3 Packet Filtering
        1. 43.3.3.1 Packet Filtering Sequence
        2. 43.3.3.2 Destination Address Filtering
        3. 43.3.3.3 Source Address Filtering
        4. 43.3.3.4 Inverse Filtering
        5. 43.3.3.5 VLAN Filtering
          1. 43.3.3.5.1 Comparison Modes
          2. 43.3.3.5.2 Filter Status
          3. 43.3.3.5.3 Stripping
        6. 43.3.3.6 Layer 3 and Layer 4 Filtering
          1. 43.3.3.6.1 Layer 3 Filtering
      4. 43.3.4 VLAN Support
        1. 43.3.4.1 Double VLAN Processing
          1. 43.3.4.1.1 Transmit Path
          2. 43.3.4.1.2 Receive Path
        2. 43.3.4.2 Double VLAN-Related Registers
        3. 43.3.4.3 Source Address and VLAN Insertion, Replacement, or Deletion
          1. 43.3.4.3.1 Programming VLAN Insertion, Replacement, or Deletion
        4. 43.3.4.4 Queue/Channel Based VLAN Tag Insertion on Tx
      5. 43.3.5 TCP/IP Offloading Features
        1. 43.3.5.1 Transmit Checksum Offload Engine
          1. 43.3.5.1.1 IP Header Checksum Engine
          2. 43.3.5.1.2 TCP/UDP/ICMP Checksum Engine
        2. 43.3.5.2 Receive Checksum Offload Engine
        3. 43.3.5.3 TCP/IP Segmentation Offload (TSO) Engine
          1. 43.3.5.3.1 DMA Operation with TSO Feature
            1. 43.3.5.3.1.1 TCP/IP Header Fields
            2. 43.3.5.3.1.2 Header and Payload Fields of Segmented Packets
        4. 43.3.5.4 Segmentation Versus Fragmentation
        5. 43.3.5.5 Using the IPv4 ARP Offload Engine
        6. 43.3.5.6 Energy Efficient Ethernet (EEE) Support
          1. 43.3.5.6.1 Magic Packet
          2. 43.3.5.6.2 Remote Wakeup Filter
          3. 43.3.5.6.3 Energy Efficient Ethernet (EEE)
            1. 43.3.5.6.3.1 Transmit Path Functions
          4. 43.3.5.6.4 Automated Entry/Exit of LPI mode in Transmit Path
          5. 43.3.5.6.5 Receive Path Functions
        7. 43.3.5.7 Automated Entry/Exit of LPI Mode in Transmit Path
        8. 43.3.5.8 Receive Path Functions
      6. 43.3.6 Loopback Mode
      7. 43.3.7 Reverse Media Independent Interface (RevMII)
        1. 43.3.7.1 RevMII Register Maps
        2. 43.3.7.2 MAC_RevMII_PHY_Control
        3. 43.3.7.3 MAC_RevMII_Common_Status
        4. 43.3.7.4 MAC_RevMII_Common_Ext_Status
        5. 43.3.7.5 MAC_RevMII_Interrupt_Status_Mask
        6. 43.3.7.6 MAC_RevMII_Remote_PHY_Status
        7. 43.3.7.7 MAC_RevMII_PHY_Status Register
    4. 43.4 Descriptors
      1. 43.4.1 Descriptor Structure
      2. 43.4.2 Transmit Descriptor
        1. 43.4.2.1 Transmit Normal Descriptor (Read Format)
          1. 43.4.2.1.1 TDES0 Normal Descriptor (Read Format)
          2. 43.4.2.1.2 TDES1 Normal Descriptor (Read Format)
          3. 43.4.2.1.3 TDES2 Normal Descriptor (Read Format)
          4. 43.4.2.1.4 TDES3 Normal Descriptor (Read Format)
        2. 43.4.2.2 Transmit Normal Descriptor (Write-Back Format)
          1. 43.4.2.2.1 TDES0 Normal Descriptor (Write-Back Format)
          2. 43.4.2.2.2 TDES1 Normal Descriptor (Write-Back Format)
          3. 43.4.2.2.3 TDES2 Normal Descriptor (Write-Back Format)
          4. 43.4.2.2.4 TDES3 Normal Descriptor (Write-Back Format)
        3. 43.4.2.3 Transmit Context Descriptor
          1. 43.4.2.3.1 TDES0 Context Descriptor
          2. 43.4.2.3.2 TDES1 Context Descriptor
          3. 43.4.2.3.3 TDES2 Context Descriptor
          4. 43.4.2.3.4 TDES3 Context Descriptor
      3. 43.4.3 Receive Descriptor
        1. 43.4.3.1 Receive Normal Descriptor (Read Format)
          1. 43.4.3.1.1 RDES0 Normal Descriptor (Read Format)
          2. 43.4.3.1.2 RDES1 Normal Descriptor (Read Format)
          3. 43.4.3.1.3 RDES2 Normal Descriptor (Read Format)
          4. 43.4.3.1.4 RDES3 Normal Descriptor (Read Format)
        2. 43.4.3.2 Receive Normal Descriptor (Write-Back Format)
          1. 43.4.3.2.1 RDES0 Normal Descriptor (Write-Back Format)
          2. 43.4.3.2.2 RDES1 Normal Descriptor (Write-Back Format)
          3. 43.4.3.2.3 RDES2 Normal Descriptor (Write-Back Format)
          4. 43.4.3.2.4 RDES3 Normal Descriptor (Write-Back Format)
        3. 43.4.3.3 Receive Context Descriptor
          1. 43.4.3.3.1 RDES0 Context Descriptor
          2. 43.4.3.3.2 RDES1 Context Descriptor
          3. 43.4.3.3.3 RDES2 Context Descriptor
          4. 43.4.3.3.4 RDES3 Context Descriptor
    5. 43.5 Programming
      1. 43.5.1 Initializing DMA
      2. 43.5.2 Initializing MTL Registers
      3. 43.5.3 Initializing MAC
      4. 43.5.4 Performing Normal Receive and Transmit Operation
      5. 43.5.5 Stopping and Starting Transmission
      6. 43.5.6 Programming Guidelines for Multi-Channel Multi-Queuing
        1. 43.5.6.1 Transmit
        2. 43.5.6.2 Receive
        3. 43.5.6.3 Programming Guidelines for Recovering from DMA Channel Failure
          1. 43.5.6.3.1 Recovering from the Receive DMA Channel Failure
          2. 43.5.6.3.2 Recovering from the Transmit DMA Channel Failure
        4. 43.5.6.4 Programming Guidelines for IEEE 1588 Timestamping
          1. 43.5.6.4.1 Initialization Guidelines for System Time Generation
          2. 43.5.6.4.2 System Time Correction
            1. 43.5.6.4.2.1 Coarse Correction Method
            2. 43.5.6.4.2.2 Fine Correction Method
        5. 43.5.6.5 Programming Guidelines for Energy Efficient Ethernet
          1. 43.5.6.5.1 Entering and Exiting the Tx LPI Mode
          2. 43.5.6.5.2 Gating Off the CSR Clock in the LPI Mode
          3. 43.5.6.5.3 Rx LPI Mode
          4. 43.5.6.5.4 Gating Off the CSR Clock in the Tx LPI Mode
        6. 43.5.6.6 Programming Guidelines for Flexible Pulse-Per-Second Output
          1. 43.5.6.6.1 Generating Single Pulse on PPS
          2. 43.5.6.6.2 Generating Next Pulse on PPS
          3. 43.5.6.6.3 Generating a Pulse Train on PPS
          4. 43.5.6.6.4 Generating an Interrupt without Affecting the PPS
        7. 43.5.6.7 Programming Guidelines for TSO
    6. 43.6 Software
      1. 43.6.1 ETHERNET Examples
        1. 43.6.1.1  Ethernet + IPC basic message passing example with interrupt - C28X_CM
        2. 43.6.1.2  Ethernet + IPC basic message passing example with interrupt - C28X_CM
        3. 43.6.1.3  Ethernet MAC Internal Loopback - CM
        4. 43.6.1.4  Ethernet Basic Transmit and Receive PHY Loopback - CM
        5. 43.6.1.5  Ethernet Threshold mode with level PHY loopback - CM
        6. 43.6.1.6  Ethernet PTP Basic Master - CM
        7. 43.6.1.7  Ethernet PTP Basic Slave - CM
        8. 43.6.1.8  Ethernet PTP Offload Master - CM
        9. 43.6.1.9  Ethernet PTP Offload Slave - CM
        10. 43.6.1.10 Ethernet MAC CRC and Checksum Offload - CM
        11. 43.6.1.11 Ethernet Transmit Segmentation Offload - CM
        12. 43.6.1.12 Ethernet MAC Internal Loopback - CM
        13. 43.6.1.13 Ethernet RevMII Example MII side - CM
        14. 43.6.1.14 Ethernet RevMII Example RevMII side - CM
        15. 43.6.1.15 Ethernet Low Latency Interrupt - CM
    7. 43.7 Ethernet Registers
      1. 43.7.1 Ethernet Base Addresses
      2. 43.7.2 ETHERNETSS_REGS Registers
      3. 43.7.3 EMAC_REGS Registers
  46. 44Generic Cyclic Redundancy Check (GCRC)
    1. 44.1 Generic CRC Overview
      1. 44.1.1 GCRC Features
      2. 44.1.2 GCRC Block Diagram
    2. 44.2 GCRC Functional Description
      1. 44.2.1 GCRC Polynomials
      2. 44.2.2 Fixed Polynomial
      3. 44.2.3 GCRC Data Input
      4. 44.2.4 GCRC Execution Sequence Flow
      5. 44.2.5 GCRC Transformations
        1. 44.2.5.1 Endianness Transformation
        2. 44.2.5.2 Mask Transformation
        3. 44.2.5.3 Bit Reversal Transformation
    3. 44.3 Software
      1. 44.3.1 GCRC Examples
        1. 44.3.1.1 GCRC example - CM
    4. 44.4 GCRC Registers
      1. 44.4.1 GCRC Base Addresses
      2. 44.4.2 GCRC_REGS Registers
  47. 45Modular Controller Area Network (MCAN)
    1. 45.1 MCAN Introduction
      1. 45.1.1 MCAN Related Collateral
      2. 45.1.2 MCAN Features
    2. 45.2 MCAN Environment
    3. 45.3 CAN Network Basics
    4. 45.4 MCAN Integration
    5. 45.5 MCAN Functional Description
      1. 45.5.1  Module Clocking Requirements
      2. 45.5.2  Interrupt Requests
      3. 45.5.3  Operating Modes
        1. 45.5.3.1 Software Initialization
        2. 45.5.3.2 Normal Operation
        3. 45.5.3.3 CAN FD Operation
      4. 45.5.4  Transmitter Delay Compensation
        1. 45.5.4.1 Description
        2. 45.5.4.2 Transmitter Delay Compensation Measurement
      5. 45.5.5  Restricted Operation Mode
      6. 45.5.6  Bus Monitoring Mode
      7. 45.5.7  Disabled Automatic Retransmission (DAR) Mode
        1. 45.5.7.1 Frame Transmission in DAR Mode
      8. 45.5.8  Clock Stop Mode
        1. 45.5.8.1 Suspend Mode
        2. 45.5.8.2 Wakeup Request
      9. 45.5.9  Test Modes
        1. 45.5.9.1 External Loop Back Mode
        2. 45.5.9.2 Internal Loop Back Mode
      10. 45.5.10 Timestamp Generation
        1. 45.5.10.1 External Timestamp Counter
      11. 45.5.11 Timeout Counter
      12. 45.5.12 Safety
        1. 45.5.12.1 ECC Wrapper
        2. 45.5.12.2 ECC Aggregator
          1. 45.5.12.2.1 ECC Aggregator Overview
          2. 45.5.12.2.2 ECC Aggregator Registers
        3. 45.5.12.3 Reads to ECC Control and Status Registers
        4. 45.5.12.4 ECC Interrupts
      13. 45.5.13 Rx Handling
        1. 45.5.13.1 Acceptance Filtering
          1. 45.5.13.1.1 Range Filter
          2. 45.5.13.1.2 Filter for Specific IDs
          3. 45.5.13.1.3 Classic Bit Mask Filter
          4. 45.5.13.1.4 Standard Message ID Filtering
          5. 45.5.13.1.5 Extended Message ID Filtering
        2. 45.5.13.2 Rx FIFOs
          1. 45.5.13.2.1 Rx FIFO Blocking Mode
          2. 45.5.13.2.2 Rx FIFO Overwrite Mode
        3. 45.5.13.3 Dedicated Rx Buffers
          1. 45.5.13.3.1 Rx Buffer Handling
      14. 45.5.14 Tx Handling
        1. 45.5.14.1 Transmit Pause
        2. 45.5.14.2 Dedicated Tx Buffers
        3. 45.5.14.3 Tx FIFO
        4. 45.5.14.4 Tx Queue
        5. 45.5.14.5 Mixed Dedicated Tx Buffers/Tx FIFO
        6. 45.5.14.6 Mixed Dedicated Tx Buffers/Tx Queue
        7. 45.5.14.7 Transmit Cancellation
        8. 45.5.14.8 Tx Event Handling
      15. 45.5.15 FIFO Acknowledge Handling
      16. 45.5.16 Message RAM
        1. 45.5.16.1 Message RAM Configuration
        2. 45.5.16.2 Rx Buffer and FIFO Element
        3. 45.5.16.3 Tx Buffer Element
        4. 45.5.16.4 Tx Event FIFO Element
        5. 45.5.16.5 Standard Message ID Filter Element
        6. 45.5.16.6 Extended Message ID Filter Element
    6. 45.6 Software
      1. 45.6.1 MCAN Examples
        1. 45.6.1.1  MCAN Internal Loopback with Interrupt - CM
        2. 45.6.1.2  MCAN Internal Loopback with Interrupt
        3. 45.6.1.3  MCAN External Loopback with Interrupt - CM
        4. 45.6.1.4  MCAN Loopback with Interrupts Example Using SYSCONFIG Tool
        5. 45.6.1.5  MCAN receive using Rx Buffer
        6. 45.6.1.6  MCAN External Reception (with mask filter) into RX-FIFO1
        7. 45.6.1.7  MCAN Classic frames transmission using Tx Buffer
        8. 45.6.1.8  MCAN External Reception (with RANGE filter) into RX-FIFO1
        9. 45.6.1.9  MCAN External Transmit using Tx Buffer
        10. 45.6.1.10 MCAN receive using Rx Buffer
        11. 45.6.1.11 MCAN Internal Loopback with Interrupt
        12. 45.6.1.12 MCAN External Transmit using Tx Buffer
    7. 45.7 MCAN Registers
      1. 45.7.1 MCAN Base Address Table (C28)
      2. 45.7.2 CM MCAN Base Address Table (CM)
      3. 45.7.3 MCANSS_REGS Registers
      4. 45.7.4 MCAN_REGS Registers
      5. 45.7.5 MCAN_ERROR_REGS Registers
  48. 46Connectivity Manager Inter-Integrated Circuit (I2C) Module
    1. 46.1 Introduction
      1. 46.1.1 Features
      2. 46.1.2 Block Diagram
    2. 46.2 Functional Description
      1. 46.2.1 I2C Bus Functional Overview
        1. 46.2.1.1  START and STOP Conditions
        2. 46.2.1.2  Data Format With 7-Bit Address
        3. 46.2.1.3  Data Validity
        4. 46.2.1.4  Acknowledge
        5. 46.2.1.5  Repeated START
          1. 46.2.1.5.1 Repeated Start for Master Transmit
          2. 46.2.1.5.2 Repeated Start for Master Receive
        6. 46.2.1.6  Clock Low Time-out (CLTO)
        7. 46.2.1.7  Dual Address
        8. 46.2.1.8  Arbitration
        9. 46.2.1.9  Glitch Suppression in Multi-Master Configuration
        10. 46.2.1.10 SMBus Operation
          1. 46.2.1.10.1 Quick Command
      2. 46.2.2 Available Speed Modes
        1. 46.2.2.1 Standard, Fast, and Fast Plus Modes
        2. 46.2.2.2 High-Speed Mode
      3. 46.2.3 Interrupts
      4. 46.2.4 Loopback Operation
      5. 46.2.5 FIFO and µDMA Operation
        1. 46.2.5.1 Master Module Burst Mode
          1. 46.2.5.1.1 Master Module µDMA Functionality
        2. 46.2.5.2 Slave Module
      6. 46.2.6 Command Sequence Flow Charts
        1. 46.2.6.1 I2C Master Command Sequences
        2. 46.2.6.2 I2C Slave Command Sequences
    3. 46.3 Initialization and Configuration
      1. 46.3.1 Configure the I2C Module to Transmit a Single Byte as a Master
      2. 46.3.2 Configure the I2C Master to High-Speed Mode
    4. 46.4 CM I2C Registers
      1. 46.4.1 CM I2C Base Addresses
      2. 46.4.2 CM_I2C_REGS Registers
      3. 46.4.3 CM_I2C_WRITE_REGS Registers
  49. 47Synchronous Serial Interface (SSI)
    1. 47.1 Introduction
      1. 47.1.1 Features
      2. 47.1.2 Block Diagram
    2. 47.2 Functional Description
      1. 47.2.1 Bit Rate Generation
      2. 47.2.2 FIFO Operation
        1. 47.2.2.1 Transmit FIFO
        2. 47.2.2.2 Receive FIFO
      3. 47.2.3 SSInFSS Function
      4. 47.2.4 Interrupts
      5. 47.2.5 Frame Formats
        1. 47.2.5.1 Freescale SPI Frame Format
          1. 47.2.5.1.1 SPO Clock Polarity Bit
          2. 47.2.5.1.2 SPH Phase Control Bit
        2. 47.2.5.2 Freescale SPI Frame Format with SPO=0 and SPH=0
        3. 47.2.5.3 Freescale SPI Frame Format with SPO=0 and SPH=1
        4. 47.2.5.4 Freescale SPI Frame Format with SPO=1 and SPH=0
        5. 47.2.5.5 Freescale SPI Frame Format with SPO=1 and SPH=1
      6. 47.2.6 DMA Operation
    3. 47.3 Initialization and Configuration
    4. 47.4 Software
      1. 47.4.1 SSI Examples
        1. 47.4.1.1 SSI Loopback example with interrupts - CM
        2. 47.4.1.2 SSI Loopback example with UDMA - CM
    5. 47.5 SSI Registers
      1. 47.5.1 SSI Base Addresses
      2. 47.5.2 SSI_REGS Registers
  50. 48Universal Asynchronous Receiver/Transmitter (UART)
    1. 48.1 Introduction
      1. 48.1.1 Features
      2. 48.1.2 Block Diagram
    2. 48.2 Functional Description
      1. 48.2.1 Transmit and Receive Logic
      2. 48.2.2 Baud-Rate Generation
      3. 48.2.3 Data Transmission
      4. 48.2.4 Serial IR (SIR)
      5. 48.2.5 9-Bit UART Mode
      6. 48.2.6 FIFO Operation
      7. 48.2.7 Interrupts
      8. 48.2.8 Loopback Operation
      9. 48.2.9 DMA Operation
    3. 48.3 Initialization and Configuration
    4. 48.4 Software
      1. 48.4.1 UART Examples
        1. 48.4.1.1 UART Echoback - CM
        2. 48.4.1.2 UART Loopback example with UDMA - CM
    5. 48.5 UART Registers
      1. 48.5.1 UART Base Addresses
      2. 48.5.2 UART_REGS Registers
      3. 48.5.3 UART_REGS_WRITE Registers
  51. 49Micro Direct Memory Access (µDMA)
    1. 49.1 Introduction
      1. 49.1.1 Features
      2. 49.1.2 Block Diagram
    2. 49.2 Functional Description
      1. 49.2.1  Channel Assignments
      2. 49.2.2  Priority
      3. 49.2.3  Arbitration Size
      4. 49.2.4  Request Types
        1. 49.2.4.1 Single Request
        2. 49.2.4.2 Burst Request
      5. 49.2.5  Channel Configuration
      6. 49.2.6  Transfer Modes
        1. 49.2.6.1 Stop Mode
        2. 49.2.6.2 Basic Mode
        3. 49.2.6.3 Auto Mode
        4. 49.2.6.4 Ping-Pong
        5. 49.2.6.5 Memory Scatter-Gather
        6. 49.2.6.6 Peripheral Scatter-Gather
      7. 49.2.7  Transfer Size and Increment
      8. 49.2.8  Peripheral Interface
        1. 49.2.8.1 FIFO Peripherals
        2. 49.2.8.2 Trigger Peripherals
      9. 49.2.9  Software Request
      10. 49.2.10 Interrupts and Errors
    3. 49.3 Initialization and Configuration
      1. 49.3.1 Module Initialization
      2. 49.3.2 Configuring a Memory-to-Memory Transfer
        1. 49.3.2.1 Configure the Channel Attributes
        2. 49.3.2.2 Configure the Channel Control Structure
          1. 49.3.2.2.1 Configure the Source and Destination
          2. 49.3.2.2.2 Configure Peripheral Interrupts
        3. 49.3.2.3 Start the Transfer
      3. 49.3.3 Configuring a Peripheral for Simple Transmit
        1. 49.3.3.1 Configure the Channel Attributes
        2. 49.3.3.2 Configure the Channel Control Structure
          1. 49.3.3.2.1 Configure the Source and Destination
        3. 49.3.3.3 Start the Transfer
      4. 49.3.4 Configuring a Peripheral for Ping-Pong Receive
        1. 49.3.4.1 Configure the Channel Attributes
        2. 49.3.4.2 Configure the Channel Control Structure
          1. 49.3.4.2.1 Configure the Source and Destination
        3. 49.3.4.3 Configure and Enable the Peripheral Interrupt
        4. 49.3.4.4 Process Interrupts
      5. 49.3.5 Configuring Channel Assignments
    4. 49.4 Software
      1. 49.4.1 UDMA Examples
        1. 49.4.1.1 uDMA RAM to RAM transfer - CM
        2. 49.4.1.2 uDMA RAM to RAM transfer - CM
    5. 49.5 µDMA Registers
      1. 49.5.1 µDMA Base Addresses
      2. 49.5.2 UDMAREGS Registers
      3. 49.5.3 UDMACHDES Registers
  52. 50Revision History

MEM_CFG_REGS Registers

Table 3-248 lists the memory-mapped registers for the MEM_CFG_REGS registers. All register offset addresses not listed in Table 3-248 should be considered as reserved locations and the register contents should not be modified.

Table 3-248 MEM_CFG_REGS Registers
OffsetAcronymRegister NameWrite ProtectionSection
0hDxLOCKDedicated RAM Config Lock RegisterEALLOWGo
2hDxCOMMITDedicated RAM Config Lock Commit RegisterEALLOWGo
8hDxACCPROT0Dedicated RAM Config RegisterEALLOWGo
10hDxTESTDedicated RAM TEST RegisterEALLOWGo
12hDxINITDedicated RAM Init RegisterEALLOWGo
14hDxINITDONEDedicated RAM InitDone Status RegisterGo
16hDxRAMTEST_LOCKLock register to Dx RAM TEST registersGo
20hLSxLOCKLocal Shared RAM Config Lock RegisterEALLOWGo
22hLSxCOMMITLocal Shared RAM Config Lock Commit RegisterEALLOWGo
24hLSxMSELLocal Shared RAM Master Sel RegisterEALLOWGo
26hLSxCLAPGMLocal Shared RAM Prog/Exe control RegisterEALLOWGo
28hLSxACCPROT0Local Shared RAM Config Register 0EALLOWGo
2AhLSxACCPROT1Local Shared RAM Config Register 1EALLOWGo
30hLSxTESTLocal Shared RAM TEST RegisterEALLOWGo
32hLSxINITLocal Shared RAM Init RegisterEALLOWGo
34hLSxINITDONELocal Shared RAM InitDone Status RegisterGo
36hLSxRAMTEST_LOCKLock register to LSx RAM TEST registersGo
40hGSxLOCKGlobal Shared RAM Config Lock RegisterEALLOWGo
42hGSxCOMMITGlobal Shared RAM Config Lock Commit RegisterEALLOWGo
44hGSxMSELGlobal Shared RAM Master Sel RegisterEALLOWGo
48hGSxACCPROT0Global Shared RAM Access Protection Register 0EALLOWGo
4AhGSxACCPROT1Global Shared RAM Access Protection Register 1EALLOWGo
4ChGSxACCPROT2Global Shared RAM Access Protection Register 2EALLOWGo
4EhGSxACCPROT3Global Shared RAM Access Protection Register 3EALLOWGo
50hGSxTESTGlobal Shared RAM TEST RegisterEALLOWGo
52hGSxINITGlobal Shared RAM Init RegisterEALLOWGo
54hGSxINITDONEGlobal Shared RAM InitDone Status RegisterGo
56hGSxRAMTEST_LOCKLock register to GSx RAM TEST registersGo
60hMSGxLOCKMessage RAM Config Lock RegisterGo
62hMSGxCOMMITMessage RAM Config Lock Commit RegisterGo
68hMSGxACCPROT0Message RAM Access Protection Register 0EALLOWGo
6AhMSGxACCPROT1Message RAM Access Protection Register 1EALLOWGo
6ChMSGxACCPROT2Message RAM Access Protection Register 2EALLOWGo
70hMSGxTESTMessage RAM TEST RegisterEALLOWGo
72hMSGxINITMessage RAM Init RegisterEALLOWGo
74hMSGxINITDONEMessage RAM InitDone Status RegisterGo
76hMSGxRAMTEST_LOCKLock register to MSGx RAM TEST registersGo
A0hROM_LOCKROM Config Lock RegisterGo
A2hROM_TESTROM TEST RegisterGo
A4hROM_FORCE_ERRORROM Force Error registerGo
AAhPERI_MEM_TEST_LOCKPeripheral Memory Test Lock RegisterGo
AChPERI_MEM_TEST_CONTROLPeripheral Memory Test control RegisterGo

Complex bit access types are encoded to fit into small table cells. Table 3-249 shows the codes that are used for access types in this section.

Table 3-249 MEM_CFG_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
WSonceW
Sonce
Write
Set once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

3.16.11.1 DxLOCK Register (Offset = 0h) [Reset = 00000000h]

DxLOCK is shown in Figure 3-234 and described in Table 3-250.

Return to the Summary Table.

Dedicated RAM Config Lock Register

Figure 3-234 DxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK_D1LOCK_D0LOCK_M1LOCK_M0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-250 DxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3LOCK_D1R/W0hLocks the write to access protection, master select, initialization control and test register fields for D1 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

2LOCK_D0R/W0hLocks the write to access protection, master select, initialization control and test register fields for D0 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

1LOCK_M1R/W0hLocks the write to access protection, master select, initialization control and test register fields for M1 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

0LOCK_M0R/W0hLocks the write to access protection, master select, initialization control and test register fields for M0 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

3.16.11.2 DxCOMMIT Register (Offset = 2h) [Reset = 00000000h]

DxCOMMIT is shown in Figure 3-235 and described in Table 3-251.

Return to the Summary Table.

Dedicated RAM Config Lock Commit Register

Figure 3-235 DxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT_D1COMMIT_D0COMMIT_M1COMMIT_M0
R-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-251 DxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3COMMIT_D1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for D1 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in DxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

2COMMIT_D0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for D0 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in DxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

1COMMIT_M1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for M1 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in DxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

0COMMIT_M0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for M0 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in DxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

3.16.11.3 DxACCPROT0 Register (Offset = 8h) [Reset = 00000000h]

DxACCPROT0 is shown in Figure 3-236 and described in Table 3-252.

Return to the Summary Table.

Dedicated RAM Config Register

Figure 3-236 DxACCPROT0 Register
3130292827262524
RESERVEDCPUWRPROT_D1FETCHPROT_D1
R-0hR/W-0hR/W-0h
2322212019181716
RESERVEDCPUWRPROT_D0FETCHPROT_D0
R-0hR/W-0hR/W-0h
15141312111098
RESERVEDCPUWRPROT_M1FETCHPROT_M1
R-0hR/W-0hR/W-0h
76543210
RESERVEDCPUWRPROT_M0FETCHPROT_M0
R-0hR/W-0hR/W-0h
Table 3-252 DxACCPROT0 Register Field Descriptions
BitFieldTypeResetDescription
31-26RESERVEDR0hReserved
25CPUWRPROT_D1R/W0hCPU Write Protection For D1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_D1R/W0hFetch Protection For D1 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-18RESERVEDR0hReserved
17CPUWRPROT_D0R/W0hCPU Write Protection For D0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are block.

Reset type: SYSRSn

16FETCHPROT_D0R/W0hFetch Protection For D0 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-10RESERVEDR0hReserved
9CPUWRPROT_M1R/W0hCPU WR Protection For M1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are block.

Reset type: SYSRSn

8FETCHPROT_M1R/W0hFetch Protection For M1 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-2RESERVEDR0hReserved
1CPUWRPROT_M0R/W0hCPU WR Protection For M0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are block.

Reset type: SYSRSn

0FETCHPROT_M0R/W0hFetch Protection For M0 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.11.4 DxTEST Register (Offset = 10h) [Reset = 00000000h]

DxTEST is shown in Figure 3-237 and described in Table 3-253.

Return to the Summary Table.

Dedicated RAM TEST Register

Figure 3-237 DxTEST Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
TEST_D1TEST_D0TEST_M1TEST_M0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-253 DxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7-6TEST_D1R/W0hSelects the defferent modes for D1 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to ECC bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.

Reset type: SYSRSn

5-4TEST_D0R/W0hSelects the defferent modes for D0 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to ECC bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.

Reset type: SYSRSn

3-2TEST_M1R/W0hSelects the defferent modes for M1 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to ECC bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.

Reset type: SYSRSn

1-0TEST_M0R/W0hSelects the defferent modes for M0 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ECC bits.
10: Writes are allowed to ECC bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.

Reset type: SYSRSn

3.16.11.5 DxINIT Register (Offset = 12h) [Reset = 00000000h]

DxINIT is shown in Figure 3-238 and described in Table 3-254.

Return to the Summary Table.

Dedicated RAM Init Register

Figure 3-238 DxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDINIT_D1INIT_D0INIT_M1INIT_M0
R-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-254 DxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3INIT_D1R-0/W1S0hRAM Initialization control for D1 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

2INIT_D0R-0/W1S0hRAM Initialization control for D0 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

1INIT_M1R-0/W1S0hRAM Initialization control for M1 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0INIT_M0R-0/W1S0hRAM Initialization control for M0 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3.16.11.6 DxINITDONE Register (Offset = 14h) [Reset = 00000000h]

DxINITDONE is shown in Figure 3-239 and described in Table 3-255.

Return to the Summary Table.

Dedicated RAM InitDone Status Register

Figure 3-239 DxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDINITDONE_D1INITDONE_D0INITDONE_M1INITDONE_M0
R-0hR-0hR-0hR-0hR-0h
Table 3-255 DxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3INITDONE_D1R0hRAM Initialization status for D1 RAM:
0: RAM Initialization is not done.
1: RAM Initialization has completed.

Reset type: SYSRSn

2INITDONE_D0R0hRAM Initialization status for D0 RAM:
0: RAM Initialization is not done.
1: RAM Initialization has completed.

Reset type: SYSRSn

1INITDONE_M1R0hRAM Initialization status for M1 RAM:
0: RAM Initialization is not done.
1: RAM Initialization has completed.

Reset type: SYSRSn

0INITDONE_M0R0hRAM Initialization status for M0 RAM:
0: RAM Initialization is not done.
1: RAM Initialization has completed.

Reset type: SYSRSn

3.16.11.7 DxRAMTEST_LOCK Register (Offset = 16h) [Reset = 00000000h]

DxRAMTEST_LOCK is shown in Figure 3-240 and described in Table 3-256.

Return to the Summary Table.

Lock register to Dx RAM TEST registers

Figure 3-240 DxRAMTEST_LOCK Register
31302928272625242322212019181716
KEY
R-0/W-0h
1514131211109876543210
RESERVEDD1D0M1M0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-256 DxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-4RESERVEDR0hReserved
3D1R/W0h0: Allows writes to DxTEST.TEST_D1 field.
1: Blocks writes to DxTEST.TEST_D1 field

Reset type: SYSRSn

2D0R/W0h0: Allows writes to DxTEST.TEST_D0 field.
1: Blocks writes to DxTEST.TEST_D0 field

Reset type: SYSRSn

1M1R/W0h0: Allows writes to DxTEST.TEST_M1 field.
1: Blocks writes to DxTEST.TEST_M1 field

Reset type: SYSRSn

0M0R/W0h0: Allows writes to DxTEST.TEST_M0 field.
1: Blocks writes to DxTEST.TEST_M0 field

Reset type: SYSRSn

3.16.11.8 LSxLOCK Register (Offset = 20h) [Reset = 00000000h]

LSxLOCK is shown in Figure 3-241 and described in Table 3-257.

Return to the Summary Table.

Local Shared RAM Config Lock Register

Figure 3-241 LSxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
LOCK_LS7LOCK_LS6LOCK_LS5LOCK_LS4LOCK_LS3LOCK_LS2LOCK_LS1LOCK_LS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-257 LSxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7LOCK_LS7R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and register fields test for LS7 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

6LOCK_LS6R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS6 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

5LOCK_LS5R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS5 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

4LOCK_LS4R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS4 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

3LOCK_LS3R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS3 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

2LOCK_LS2R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS2 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

1LOCK_LS1R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS1 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

0LOCK_LS0R/W0hLocks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS0 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are blocked.

Reset type: SYSRSn

3.16.11.9 LSxCOMMIT Register (Offset = 22h) [Reset = 00000000h]

LSxCOMMIT is shown in Figure 3-242 and described in Table 3-258.

Return to the Summary Table.

Local Shared RAM Config Lock Commit Register

Figure 3-242 LSxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
COMMIT_LS7COMMIT_LS6COMMIT_LS5COMMIT_LS4COMMIT_LS3COMMIT_LS2COMMIT_LS1COMMIT_LS0
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-258 LSxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7COMMIT_LS7R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS7 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

6COMMIT_LS6R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS6 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

5COMMIT_LS5R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS5 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

4COMMIT_LS4R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS4 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

3COMMIT_LS3R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS3 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

2COMMIT_LS2R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS2 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

1COMMIT_LS1R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS1 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

0COMMIT_LS0R/WSonce0hPermanently Locks the write to access protection, master select, program or data memory select, initialization control and test register fields for LS0 RAM:
0: Write to ACCPROT, INIT, CLAPGM and Mselect fields are allowed based on value of lock field in LSxLOCK register.
1: Write to ACCPROT, INIT, CLAPGM and Mselect fields are permanently blocked.

Reset type: SYSRSn

3.16.11.10 LSxMSEL Register (Offset = 24h) [Reset = 00000000h]

LSxMSEL is shown in Figure 3-243 and described in Table 3-259.

Return to the Summary Table.

Local Shared RAM Master Sel Register

Figure 3-243 LSxMSEL Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
MSEL_LS7MSEL_LS6MSEL_LS5MSEL_LS4
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
MSEL_LS3MSEL_LS2MSEL_LS1MSEL_LS0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-259 LSxMSEL Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-14MSEL_LS7R/W0hMaster Select for LS7 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

13-12MSEL_LS6R/W0hMaster Select for LS6 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

11-10MSEL_LS5R/W0hMaster Select for LS5 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

9-8MSEL_LS4R/W0hMaster Select for LS4 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

7-6MSEL_LS3R/W0hMaster Select for LS3 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

5-4MSEL_LS2R/W0hMaster Select for LS2 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

3-2MSEL_LS1R/W0hMaster Select for LS1 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

1-0MSEL_LS0R/W0hMaster Select for LS0 RAM:
00: Memory is dedicated to CPU.
01: Memory is shared between CPU and CLA1 if CLAPGM_LSx bit in LSxCLAPGM register is programmed as '0'.
10: Reserved.
11: Reserved.

Reset type: SYSRSn

3.16.11.11 LSxCLAPGM Register (Offset = 26h) [Reset = 00000000h]

LSxCLAPGM is shown in Figure 3-244 and described in Table 3-260.

Return to the Summary Table.

Local Shared RAM Prog/Exe control Register

Figure 3-244 LSxCLAPGM Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
CLAPGM_LS7CLAPGM_LS6CLAPGM_LS5CLAPGM_LS4CLAPGM_LS3CLAPGM_LS2CLAPGM_LS1CLAPGM_LS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-260 LSxCLAPGM Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7CLAPGM_LS7R/W0hSelects LS7 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

6CLAPGM_LS6R/W0hSelects LS6 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

5CLAPGM_LS5R/W0hSelects LS5 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

4CLAPGM_LS4R/W0hSelects LS4 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

3CLAPGM_LS3R/W0hSelects LS3 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

2CLAPGM_LS2R/W0hSelects LS2 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

1CLAPGM_LS1R/W0hSelects LS1 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

0CLAPGM_LS0R/W0hSelects LS0 RAM as program vs data memory for CLA:
0: CLA Data memory.
1: CLA Program memory.

Reset type: SYSRSn

3.16.11.12 LSxACCPROT0 Register (Offset = 28h) [Reset = 00000000h]

LSxACCPROT0 is shown in Figure 3-245 and described in Table 3-261.

Return to the Summary Table.

Local Shared RAM Config Register 0

Figure 3-245 LSxACCPROT0 Register
3130292827262524
RESERVEDCPUWRPROT_LS3FETCHPROT_LS3
R-0hR/W-0hR/W-0h
2322212019181716
RESERVEDCPUWRPROT_LS2FETCHPROT_LS2
R-0hR/W-0hR/W-0h
15141312111098
RESERVEDCPUWRPROT_LS1FETCHPROT_LS1
R-0hR/W-0hR/W-0h
76543210
RESERVEDCPUWRPROT_LS0FETCHPROT_LS0
R-0hR/W-0hR/W-0h
Table 3-261 LSxACCPROT0 Register Field Descriptions
BitFieldTypeResetDescription
31-26RESERVEDR0hReserved
25CPUWRPROT_LS3R/W0hCPU WR Protection For LS3 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_LS3R/W0hFetch Protection For LS3 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-18RESERVEDR0hReserved
17CPUWRPROT_LS2R/W0hCPU WR Protection For LS2 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_LS2R/W0hFetch Protection For LS2 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-10RESERVEDR0hReserved
9CPUWRPROT_LS1R/W0hCPU WR Protection For LS1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_LS1R/W0hFetch Protection For LS1 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-2RESERVEDR0hReserved
1CPUWRPROT_LS0R/W0hCPU WR Protection For LS0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_LS0R/W0hFetch Protection For LS0 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.11.13 LSxACCPROT1 Register (Offset = 2Ah) [Reset = 00000000h]

LSxACCPROT1 is shown in Figure 3-246 and described in Table 3-262.

Return to the Summary Table.

Local Shared RAM Config Register 1

Figure 3-246 LSxACCPROT1 Register
3130292827262524
RESERVEDCPUWRPROT_LS7FETCHPROT_LS7
R-0hR/W-0hR/W-0h
2322212019181716
RESERVEDCPUWRPROT_LS6FETCHPROT_LS6
R-0hR/W-0hR/W-0h
15141312111098
RESERVEDCPUWRPROT_LS5FETCHPROT_LS5
R-0hR/W-0hR/W-0h
76543210
RESERVEDCPUWRPROT_LS4FETCHPROT_LS4
R-0hR/W-0hR/W-0h
Table 3-262 LSxACCPROT1 Register Field Descriptions
BitFieldTypeResetDescription
31-26RESERVEDR0hReserved
25CPUWRPROT_LS7R/W0hCPU WR Protection For LS7 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_LS7R/W0hFetch Protection For LS7 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-18RESERVEDR0hReserved
17CPUWRPROT_LS6R/W0hCPU WR Protection For LS6 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_LS6R/W0hFetch Protection For LS6 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-10RESERVEDR0hReserved
9CPUWRPROT_LS5R/W0hCPU WR Protection For LS5 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_LS5R/W0hFetch Protection For LS5 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-2RESERVEDR0hReserved
1CPUWRPROT_LS4R/W0hCPU WR Protection For LS4 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_LS4R/W0hFetch Protection For LS4 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.11.14 LSxTEST Register (Offset = 30h) [Reset = 00000000h]

LSxTEST is shown in Figure 3-247 and described in Table 3-263.

Return to the Summary Table.

Local Shared RAM TEST Register

Figure 3-247 LSxTEST Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
TEST_LS7TEST_LS6TEST_LS5TEST_LS4
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
TEST_LS3TEST_LS2TEST_LS1TEST_LS0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-263 LSxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-14TEST_LS7R/W0hSelects the defferent modes for LS7 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

13-12TEST_LS6R/W0hSelects the defferent modes for LS6 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

11-10TEST_LS5R/W0hSelects the defferent modes for LS5 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

9-8TEST_LS4R/W0hSelects the defferent modes for LS4 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

7-6TEST_LS3R/W0hSelects the defferent modes for LS3 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

5-4TEST_LS2R/W0hSelects the defferent modes for LS2 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

3-2TEST_LS1R/W0hSelects the defferent modes for LS1 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

1-0TEST_LS0R/W0hSelects the defferent modes for LS0 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to ecc bits.
10: Writes are allowed to ecc bits only. No write to data bits.
11: Functional Mode.

Reset type: SYSRSn

3.16.11.15 LSxINIT Register (Offset = 32h) [Reset = 00000000h]

LSxINIT is shown in Figure 3-248 and described in Table 3-264.

Return to the Summary Table.

Local Shared RAM Init Register

Figure 3-248 LSxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
INIT_LS7INIT_LS6INIT_LS5INIT_LS4INIT_LS3INIT_LS2INIT_LS1INIT_LS0
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-264 LSxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7INIT_LS7R-0/W1S0hRAM Initialization control for LS7 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

6INIT_LS6R-0/W1S0hRAM Initialization control for LS6 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

5INIT_LS5R-0/W1S0hRAM Initialization control for LS5 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

4INIT_LS4R-0/W1S0hRAM Initialization control for LS4 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3INIT_LS3R-0/W1S0hRAM Initialization control for LS3 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

2INIT_LS2R-0/W1S0hRAM Initialization control for LS2 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

1INIT_LS1R-0/W1S0hRAM Initialization control for LS1 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0INIT_LS0R-0/W1S0hRAM Initialization control for LS0 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3.16.11.16 LSxINITDONE Register (Offset = 34h) [Reset = 00000000h]

LSxINITDONE is shown in Figure 3-249 and described in Table 3-265.

Return to the Summary Table.

Local Shared RAM InitDone Status Register

Figure 3-249 LSxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
INITDONE_LS7INITDONE_LS6INITDONE_LS5INITDONE_LS4INITDONE_LS3INITDONE_LS2INITDONE_LS1INITDONE_LS0
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 3-265 LSxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7INITDONE_LS7R0hRAM Initialization status for LS7 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

6INITDONE_LS6R0hRAM Initialization status for LS6 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

5INITDONE_LS5R0hRAM Initialization status for LS5 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

4INITDONE_LS4R0hRAM Initialization status for LS4 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3INITDONE_LS3R0hRAM Initialization status for LS3 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

2INITDONE_LS2R0hRAM Initialization status for LS2 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

1INITDONE_LS1R0hRAM Initialization status for LS1 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

0INITDONE_LS0R0hRAM Initialization status for LS0 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3.16.11.17 LSxRAMTEST_LOCK Register (Offset = 36h) [Reset = 00000000h]

LSxRAMTEST_LOCK is shown in Figure 3-250 and described in Table 3-266.

Return to the Summary Table.

Lock register to LSx RAM TEST registers

Figure 3-250 LSxRAMTEST_LOCK Register
31302928272625242322212019181716
KEY
R-0/W-0h
1514131211109876543210
RESERVEDLS7LS6LS5LS4LS3LS2LS1LS0
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-266 LSxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-8RESERVEDR0hReserved
7LS7R/W0h0: Allows writes to LSxTEST.TEST_LS7 field.
1: Blocks writes to LSxTEST.TEST_LS7 field.

Reset type: SYSRSn

6LS6R/W0h0: Allows writes to LSxTEST.TEST_LS6 field.
1: Blocks writes to LSxTEST.TEST_LS6 field.

Reset type: SYSRSn

5LS5R/W0h0: Allows writes to LSxTEST.TEST_LS5 field.
1: Blocks writes to LSxTEST.TEST_LS5 field.

Reset type: SYSRSn

4LS4R/W0h0: Allows writes to LSxTEST.TEST_LS4 field.
1: Blocks writes to LSxTEST.TEST_LS4 field.

Reset type: SYSRSn

3LS3R/W0h0: Allows writes to LSxTEST.TEST_LS3 field.
1: Blocks writes to LSxTEST.TEST_LS3 field.

Reset type: SYSRSn

2LS2R/W0h0: Allows writes to LSxTEST.TEST_LS2 field.
1: Blocks writes to LSxTEST.TEST_LS2 field.

Reset type: SYSRSn

1LS1R/W0h0: Allows writes to LSxTEST.TEST_LS1 field.
1: Blocks writes to LSxTEST.TEST_LS1 field.

Reset type: SYSRSn

0LS0R/W0h0: Allows writes to LSxTEST.TEST_LS0 field.
1: Blocks writes to LSxTEST.TEST_LS0 field.

Reset type: SYSRSn

3.16.11.18 GSxLOCK Register (Offset = 40h) [Reset = 00000000h]

GSxLOCK is shown in Figure 3-251 and described in Table 3-267.

Return to the Summary Table.

Global Shared RAM Config Lock Register

Figure 3-251 GSxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
LOCK_GS15LOCK_GS14LOCK_GS13LOCK_GS12LOCK_GS11LOCK_GS10LOCK_GS9LOCK_GS8
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
LOCK_GS7LOCK_GS6LOCK_GS5LOCK_GS4LOCK_GS3LOCK_GS2LOCK_GS1LOCK_GS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-267 GSxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15LOCK_GS15R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS15 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

14LOCK_GS14R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS14 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

13LOCK_GS13R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS13 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

12LOCK_GS12R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS12 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

11LOCK_GS11R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS11 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

10LOCK_GS10R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS10 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

9LOCK_GS9R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS9 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

8LOCK_GS8R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS8 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

7LOCK_GS7R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS7 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

6LOCK_GS6R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS6 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

5LOCK_GS5R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS5 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

4LOCK_GS4R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS4 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

3LOCK_GS3R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS3 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

2LOCK_GS2R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS2 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

1LOCK_GS1R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS1 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

0LOCK_GS0R/W0hLocks the write to access protection, master select, initialization control and test register fields for GS0 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

3.16.11.19 GSxCOMMIT Register (Offset = 42h) [Reset = 00000000h]

GSxCOMMIT is shown in Figure 3-252 and described in Table 3-268.

Return to the Summary Table.

Global Shared RAM Config Lock Commit Register

Figure 3-252 GSxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
COMMIT_GS15COMMIT_GS14COMMIT_GS13COMMIT_GS12COMMIT_GS11COMMIT_GS10COMMIT_GS9COMMIT_GS8
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
76543210
COMMIT_GS7COMMIT_GS6COMMIT_GS5COMMIT_GS4COMMIT_GS3COMMIT_GS2COMMIT_GS1COMMIT_GS0
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-268 GSxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15COMMIT_GS15R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS15 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

14COMMIT_GS14R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS14 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

13COMMIT_GS13R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS13 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

12COMMIT_GS12R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS12 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

11COMMIT_GS11R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS11 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

10COMMIT_GS10R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS10 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

9COMMIT_GS9R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS9 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

8COMMIT_GS8R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS8 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

7COMMIT_GS7R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS7 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

6COMMIT_GS6R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS6 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

5COMMIT_GS5R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS5 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

4COMMIT_GS4R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS4 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

3COMMIT_GS3R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS3 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

2COMMIT_GS2R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS2 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

1COMMIT_GS1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS1 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

0COMMIT_GS0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for GS0 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed based on value of lock field in GSxLOCK register.
1: Write to ACCPROT, INIT and Mselect fields are permanently blocked.

Reset type: SYSRSn

3.16.11.20 GSxMSEL Register (Offset = 44h) [Reset = 00000000h]

GSxMSEL is shown in Figure 3-253 and described in Table 3-269.

Return to the Summary Table.

Global Shared RAM Master Sel Register

Figure 3-253 GSxMSEL Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
MSEL_GS15MSEL_GS14MSEL_GS13MSEL_GS12MSEL_GS11MSEL_GS10MSEL_GS9MSEL_GS8
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
MSEL_GS7MSEL_GS6MSEL_GS5MSEL_GS4MSEL_GS3MSEL_GS2MSEL_GS1MSEL_GS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-269 GSxMSEL Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15MSEL_GS15R/W0hMaster Select for GS15 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

14MSEL_GS14R/W0hMaster Select for GS14 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

13MSEL_GS13R/W0hMaster Select for GS13 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

12MSEL_GS12R/W0hMaster Select for GS12 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

11MSEL_GS11R/W0hMaster Select for GS11 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

10MSEL_GS10R/W0hMaster Select for GS10 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

9MSEL_GS9R/W0hMaster Select for GS9 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

8MSEL_GS8R/W0hMaster Select for GS8 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

7MSEL_GS7R/W0hMaster Select for GS7 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

6MSEL_GS6R/W0hMaster Select for GS6 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

5MSEL_GS5R/W0hMaster Select for GS5 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

4MSEL_GS4R/W0hMaster Select for GS4 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

3MSEL_GS3R/W0hMaster Select for GS3 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

2MSEL_GS2R/W0hMaster Select for GS2 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

1MSEL_GS1R/W0hMaster Select for GS1 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

0MSEL_GS0R/W0hMaster Select for GS0 RAM:
0: CPU1 is master for this memory.
1: CPU2 is master for this memory.

Reset type: CPU1.SYSRSn

3.16.11.21 GSxACCPROT0 Register (Offset = 48h) [Reset = 00000000h]

GSxACCPROT0 is shown in Figure 3-254 and described in Table 3-270.

Return to the Summary Table.

Global Shared RAM Access Protection Register 0

Figure 3-254 GSxACCPROT0 Register
3130292827262524
RESERVEDDMAWRPROT_GS3CPUWRPROT_GS3FETCHPROT_GS3
R-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDDMAWRPROT_GS2CPUWRPROT_GS2FETCHPROT_GS2
R-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDDMAWRPROT_GS1CPUWRPROT_GS1FETCHPROT_GS1
R-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDDMAWRPROT_GS0CPUWRPROT_GS0FETCHPROT_GS0
R-0hR/W-0hR/W-0hR/W-0h
Table 3-270 GSxACCPROT0 Register Field Descriptions
BitFieldTypeResetDescription
31-27RESERVEDR0hReserved
26DMAWRPROT_GS3R/W0hDMA WR Protection For GS3 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

25CPUWRPROT_GS3R/W0hCPU WR Protection For GS3 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_GS3R/W0hFetch Protection For GS3 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-19RESERVEDR0hReserved
18DMAWRPROT_GS2R/W0hDMA WR Protection For GS2 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

17CPUWRPROT_GS2R/W0hCPU WR Protection For GS2 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_GS2R/W0hFetch Protection For GS2 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-11RESERVEDR0hReserved
10DMAWRPROT_GS1R/W0hDMA WR Protection For GS1 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

9CPUWRPROT_GS1R/W0hCPU WR Protection For GS1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_GS1R/W0hFetch Protection For GS1 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-3RESERVEDR0hReserved
2DMAWRPROT_GS0R/W0hDMA WR Protection For GS0 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

1CPUWRPROT_GS0R/W0hCPU WR Protection For GS0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_GS0R/W0hFetch Protection For GS0 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.11.22 GSxACCPROT1 Register (Offset = 4Ah) [Reset = 00000000h]

GSxACCPROT1 is shown in Figure 3-255 and described in Table 3-271.

Return to the Summary Table.

Global Shared RAM Access Protection Register 1

Figure 3-255 GSxACCPROT1 Register
3130292827262524
RESERVEDDMAWRPROT_GS7CPUWRPROT_GS7FETCHPROT_GS7
R-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDDMAWRPROT_GS6CPUWRPROT_GS6FETCHPROT_GS6
R-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDDMAWRPROT_GS5CPUWRPROT_GS5FETCHPROT_GS5
R-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDDMAWRPROT_GS4CPUWRPROT_GS4FETCHPROT_GS4
R-0hR/W-0hR/W-0hR/W-0h
Table 3-271 GSxACCPROT1 Register Field Descriptions
BitFieldTypeResetDescription
31-27RESERVEDR0hReserved
26DMAWRPROT_GS7R/W0hDMA WR Protection For GS7 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

25CPUWRPROT_GS7R/W0hCPU WR Protection For GS7 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_GS7R/W0hFetch Protection For GS7 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-19RESERVEDR0hReserved
18DMAWRPROT_GS6R/W0hDMA WR Protection For GS6 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

17CPUWRPROT_GS6R/W0hCPU WR Protection For GS6 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_GS6R/W0hFetch Protection For GS6 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-11RESERVEDR0hReserved
10DMAWRPROT_GS5R/W0hDMA WR Protection For GS5 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

9CPUWRPROT_GS5R/W0hCPU WR Protection For GS5 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_GS5R/W0hFetch Protection For GS5 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-3RESERVEDR0hReserved
2DMAWRPROT_GS4R/W0hDMA WR Protection For GS4 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

1CPUWRPROT_GS4R/W0hCPU WR Protection For GS4 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_GS4R/W0hFetch Protection For GS4 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.11.23 GSxACCPROT2 Register (Offset = 4Ch) [Reset = 00000000h]

GSxACCPROT2 is shown in Figure 3-256 and described in Table 3-272.

Return to the Summary Table.

Global Shared RAM Access Protection Register 2

Figure 3-256 GSxACCPROT2 Register
3130292827262524
RESERVEDDMAWRPROT_GS11CPUWRPROT_GS11FETCHPROT_GS11
R-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDDMAWRPROT_GS10CPUWRPROT_GS10FETCHPROT_GS10
R-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDDMAWRPROT_GS9CPUWRPROT_GS9FETCHPROT_GS9
R-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDDMAWRPROT_GS8CPUWRPROT_GS8FETCHPROT_GS8
R-0hR/W-0hR/W-0hR/W-0h
Table 3-272 GSxACCPROT2 Register Field Descriptions
BitFieldTypeResetDescription
31-27RESERVEDR0hReserved
26DMAWRPROT_GS11R/W0hDMA WR Protection For GS11 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

25CPUWRPROT_GS11R/W0hCPU WR Protection For GS11 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_GS11R/W0hFetch Protection For GS11 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-19RESERVEDR0hReserved
18DMAWRPROT_GS10R/W0hDMA WR Protection For GS10 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

17CPUWRPROT_GS10R/W0hCPU WR Protection For GS10 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_GS10R/W0hFetch Protection For GS10 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-11RESERVEDR0hReserved
10DMAWRPROT_GS9R/W0hDMA WR Protection For GS9 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

9CPUWRPROT_GS9R/W0hCPU WR Protection For GS9 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_GS9R/W0hFetch Protection For GS9 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-3RESERVEDR0hReserved
2DMAWRPROT_GS8R/W0hDMA WR Protection For GS8 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

1CPUWRPROT_GS8R/W0hCPU WR Protection For GS8 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_GS8R/W0hFetch Protection For GS8 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.11.24 GSxACCPROT3 Register (Offset = 4Eh) [Reset = 00000000h]

GSxACCPROT3 is shown in Figure 3-257 and described in Table 3-273.

Return to the Summary Table.

Global Shared RAM Access Protection Register 3

Figure 3-257 GSxACCPROT3 Register
3130292827262524
RESERVEDDMAWRPROT_GS15CPUWRPROT_GS15FETCHPROT_GS15
R-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDDMAWRPROT_GS14CPUWRPROT_GS14FETCHPROT_GS14
R-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDDMAWRPROT_GS13CPUWRPROT_GS13FETCHPROT_GS13
R-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDDMAWRPROT_GS12CPUWRPROT_GS12FETCHPROT_GS12
R-0hR/W-0hR/W-0hR/W-0h
Table 3-273 GSxACCPROT3 Register Field Descriptions
BitFieldTypeResetDescription
31-27RESERVEDR0hReserved
26DMAWRPROT_GS15R/W0hDMA WR Protection For GS15 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

25CPUWRPROT_GS15R/W0hCPU WR Protection For GS15 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24FETCHPROT_GS15R/W0hFetch Protection For GS15 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

23-19RESERVEDR0hReserved
18DMAWRPROT_GS14R/W0hDMA WR Protection For GS14 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

17CPUWRPROT_GS14R/W0hCPU WR Protection For GS14 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

16FETCHPROT_GS14R/W0hFetch Protection For GS14 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

15-11RESERVEDR0hReserved
10DMAWRPROT_GS13R/W0hDMA WR Protection For GS13 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

9CPUWRPROT_GS13R/W0hCPU WR Protection For GS13 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8FETCHPROT_GS13R/W0hFetch Protection For GS13 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

7-3RESERVEDR0hReserved
2DMAWRPROT_GS12R/W0hDMA WR Protection For GS12 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

1CPUWRPROT_GS12R/W0hCPU WR Protection For GS12 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0FETCHPROT_GS12R/W0hFetch Protection For GS12 RAM:
0: CPU Fetch are allowed.
1: CPU Fetch are blocked.

Reset type: SYSRSn

3.16.11.25 GSxTEST Register (Offset = 50h) [Reset = 00000000h]

GSxTEST is shown in Figure 3-258 and described in Table 3-274.

Return to the Summary Table.

Global Shared RAM TEST Register

Figure 3-258 GSxTEST Register
3130292827262524
TEST_GS15TEST_GS14TEST_GS13TEST_GS12
R/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
TEST_GS11TEST_GS10TEST_GS9TEST_GS8
R/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
TEST_GS7TEST_GS6TEST_GS5TEST_GS4
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
TEST_GS3TEST_GS2TEST_GS1TEST_GS0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-274 GSxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-30TEST_GS15R/W0hSelects the defferent modes for GS15 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

29-28TEST_GS14R/W0hSelects the defferent modes for GS14 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

27-26TEST_GS13R/W0hSelects the defferent modes for GS13 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

25-24TEST_GS12R/W0hSelects the defferent modes for GS12 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

23-22TEST_GS11R/W0hSelects the defferent modes for GS11 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

21-20TEST_GS10R/W0hSelects the defferent modes for GS10 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

19-18TEST_GS9R/W0hSelects the defferent modes for GS9 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

17-16TEST_GS8R/W0hSelects the defferent modes for GS8 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

15-14TEST_GS7R/W0hSelects the defferent modes for GS7 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

13-12TEST_GS6R/W0hSelects the defferent modes for GS6 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

11-10TEST_GS5R/W0hSelects the defferent modes for GS5 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

9-8TEST_GS4R/W0hSelects the defferent modes for GS4 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

7-6TEST_GS3R/W0hSelects the defferent modes for GS3 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

5-4TEST_GS2R/W0hSelects the defferent modes for GS2 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3-2TEST_GS1R/W0hSelects the defferent modes for GS1 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

1-0TEST_GS0R/W0hSelects the defferent modes for GS0 RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3.16.11.26 GSxINIT Register (Offset = 52h) [Reset = 00000000h]

GSxINIT is shown in Figure 3-259 and described in Table 3-275.

Return to the Summary Table.

Global Shared RAM Init Register

Figure 3-259 GSxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
INIT_GS15INIT_GS14INIT_GS13INIT_GS12INIT_GS11INIT_GS10INIT_GS9INIT_GS8
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
76543210
INIT_GS7INIT_GS6INIT_GS5INIT_GS4INIT_GS3INIT_GS2INIT_GS1INIT_GS0
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-275 GSxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15INIT_GS15R-0/W1S0hRAM Initialization control for GS15 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

14INIT_GS14R-0/W1S0hRAM Initialization control for GS14 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

13INIT_GS13R-0/W1S0hRAM Initialization control for GS13 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

12INIT_GS12R-0/W1S0hRAM Initialization control for GS12 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

11INIT_GS11R-0/W1S0hRAM Initialization control for GS11 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

10INIT_GS10R-0/W1S0hRAM Initialization control for GS10 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

9INIT_GS9R-0/W1S0hRAM Initialization control for GS9 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

8INIT_GS8R-0/W1S0hRAM Initialization control for GS8 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

7INIT_GS7R-0/W1S0hRAM Initialization control for GS7 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

6INIT_GS6R-0/W1S0hRAM Initialization control for GS6 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

5INIT_GS5R-0/W1S0hRAM Initialization control for GS5 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

4INIT_GS4R-0/W1S0hRAM Initialization control for GS4 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3INIT_GS3R-0/W1S0hRAM Initialization control for GS3 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

2INIT_GS2R-0/W1S0hRAM Initialization control for GS2 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

1INIT_GS1R-0/W1S0hRAM Initialization control for GS1 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0INIT_GS0R-0/W1S0hRAM Initialization control for GS0 RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3.16.11.27 GSxINITDONE Register (Offset = 54h) [Reset = 00000000h]

GSxINITDONE is shown in Figure 3-260 and described in Table 3-276.

Return to the Summary Table.

Global Shared RAM InitDone Status Register

Figure 3-260 GSxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
INITDONE_GS15INITDONE_GS14INITDONE_GS13INITDONE_GS12INITDONE_GS11INITDONE_GS10INITDONE_GS9INITDONE_GS8
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
76543210
INITDONE_GS7INITDONE_GS6INITDONE_GS5INITDONE_GS4INITDONE_GS3INITDONE_GS2INITDONE_GS1INITDONE_GS0
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 3-276 GSxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15INITDONE_GS15R0hRAM Initialization status for GS15 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

14INITDONE_GS14R0hRAM Initialization status for GS14 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

13INITDONE_GS13R0hRAM Initialization status for GS13 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

12INITDONE_GS12R0hRAM Initialization status for GS12 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

11INITDONE_GS11R0hRAM Initialization status for GS11 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

10INITDONE_GS10R0hRAM Initialization status for GS10 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

9INITDONE_GS9R0hRAM Initialization status for GS9 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

8INITDONE_GS8R0hRAM Initialization status for GS8 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

7INITDONE_GS7R0hRAM Initialization status for GS7 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

6INITDONE_GS6R0hRAM Initialization status for GS6 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

5INITDONE_GS5R0hRAM Initialization status for GS5 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

4INITDONE_GS4R0hRAM Initialization status for GS4 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3INITDONE_GS3R0hRAM Initialization status for GS3 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

2INITDONE_GS2R0hRAM Initialization status for GS2 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

1INITDONE_GS1R0hRAM Initialization status for GS1 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

0INITDONE_GS0R0hRAM Initialization status for GS0 RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3.16.11.28 GSxRAMTEST_LOCK Register (Offset = 56h) [Reset = 00000000h]

GSxRAMTEST_LOCK is shown in Figure 3-261 and described in Table 3-277.

Return to the Summary Table.

Lock register to GSx RAM TEST registers

Figure 3-261 GSxRAMTEST_LOCK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
GS15GS14GS13GS12GS11GS10GS9GS8
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
GS7GS6GS5GS4GS3GS2GS1GS0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-277 GSxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15GS15R/W0h0: Allows writes to GSxTEST.TEST_GS15 field.
1: Blocks writes to GSxTEST.TEST_GS15 field.

Reset type: SYSRSn

14GS14R/W0h0: Allows writes to GSxTEST.TEST_GS14 field.
1: Blocks writes to GSxTEST.TEST_GS14 field.

Reset type: SYSRSn

13GS13R/W0h0: Allows writes to GSxTEST.TEST_GS13 field.
1: Blocks writes to GSxTEST.TEST_GS13 field.

Reset type: SYSRSn

12GS12R/W0h0: Allows writes to GSxTEST.TEST_GS12 field.
1: Blocks writes to GSxTEST.TEST_GS12 field.

Reset type: SYSRSn

11GS11R/W0h0: Allows writes to GSxTEST.TEST_GS11 field.
1: Blocks writes to GSxTEST.TEST_GS11 field.

Reset type: SYSRSn

10GS10R/W0h0: Allows writes to GSxTEST.TEST_GS10 field.
1: Blocks writes to GSxTEST.TEST_GS10 field.

Reset type: SYSRSn

9GS9R/W0h0: Allows writes to GSxTEST.TEST_GS9 field.
1: Blocks writes to GSxTEST.TEST_GS9 field.

Reset type: SYSRSn

8GS8R/W0h0: Allows writes to GSxTEST.TEST_GS8 field.
1: Blocks writes to GSxTEST.TEST_GS8 field.

Reset type: SYSRSn

7GS7R/W0h0: Allows writes to GSxTEST.TEST_GS7 field.
1: Blocks writes to GSxTEST.TEST_GS7 field.

Reset type: SYSRSn

6GS6R/W0h0: Allows writes to GSxTEST.TEST_GS6 field.
1: Blocks writes to GSxTEST.TEST_GS6 field.

Reset type: SYSRSn

5GS5R/W0h0: Allows writes to GSxTEST.TEST_GS5 field.
1: Blocks writes to GSxTEST.TEST_GS5 field.

Reset type: SYSRSn

4GS4R/W0h0: Allows writes to GSxTEST.TEST_GS4 field.
1: Blocks writes to GSxTEST.TEST_GS4 field.

Reset type: SYSRSn

3GS3R/W0h0: Allows writes to GSxTEST.TEST_GS3 field.
1: Blocks writes to GSxTEST.TEST_GS3 field.

Reset type: SYSRSn

2GS2R/W0h0: Allows writes to GSxTEST.TEST_GS2 field.
1: Blocks writes to GSxTEST.TEST_GS2 field.

Reset type: SYSRSn

1GS1R/W0h0: Allows writes to GSxTEST.TEST_GS1 field.
1: Blocks writes to GSxTEST.TEST_GS1 field.

Reset type: SYSRSn

0GS0R/W0h0: Allows writes to GSxTEST.TEST_GS0 field.
1: Blocks writes to GSxTEST.TEST_GS0 field.

Reset type: SYSRSn

3.16.11.29 MSGxLOCK Register (Offset = 60h) [Reset = 00000000h]

MSGxLOCK is shown in Figure 3-262 and described in Table 3-278.

Return to the Summary Table.

Message RAM Config Lock Register

Figure 3-262 MSGxLOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDLOCK_DMATOCLA2LOCK_CLA2TODMALOCK_CPUTOCM_MSGRAM1LOCK_CPUTOCM_MSGRAM0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
LOCK_CPUTOCPU_MSGRAM1LOCK_DMATOCLA1LOCK_CLA1TODMARESERVEDRESERVEDLOCK_CLA1TOCPULOCK_CPUTOCLA1LOCK_CPUTOCPU_MSGRAM0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-278 MSGxLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11LOCK_DMATOCLA2R/W0hLocks the write to access protection, master select, initialization control and test register fields for DMA2CLA MSG RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

10LOCK_CLA2TODMAR/W0hLocks the write to access protection, master select, initialization control and test register fields for CLA2DMA MSG RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

9LOCK_CPUTOCM_MSGRAM1R/W0hLocks the write to access protection, master select, initialization control and test register fields for CPU2CM MSG RAM1:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

8LOCK_CPUTOCM_MSGRAM0R/W0hLocks the write to access protection, master select, initialization control and test register fields for CPU2CM MSG RAM0:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

7LOCK_CPUTOCPU_MSGRAM1R/W0hLocks the write to access protection, master select, initialization control and test register fields for CPU2CPU MSG RAM1:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

6LOCK_DMATOCLA1R/W0hLocks the write to access protection, master select, initialization control and test for DMATOCLA1 RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

5LOCK_CLA1TODMAR/W0hLocks the write to access protection, master select, initialization control and test for CLA1TODMA RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2LOCK_CLA1TOCPUR/W0hLocks the write to access protection, master select, initialization control and test register fields for CLA1TOCPU RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

1LOCK_CPUTOCLA1R/W0hLocks the write to access protection, master select, initialization control and test register fields for CPUTOCLA1 RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

0LOCK_CPUTOCPU_MSGRAM0R/W0hLocks the write to access protection, master select, initialization control and test register fields for CPU2CPU MSG RAM0:
0: Write to ACCPROT, INIT fields are allowed.
1: Write to ACCPROT, INIT fields are blocked.

Reset type: SYSRSn

3.16.11.30 MSGxCOMMIT Register (Offset = 62h) [Reset = 00000000h]

MSGxCOMMIT is shown in Figure 3-263 and described in Table 3-279.

Return to the Summary Table.

Message RAM Config Lock Commit Register

Figure 3-263 MSGxCOMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDCOMMIT_DMATOCLA_MSGRAM1COMMIT_CLATODMA_MSGRAM0COMMIT_CPUTOCM_MSGRAM1COMMIT_CPUTOCM_MSGRAM0
R-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
76543210
COMMIT_CPUTOCPU_MSGRAM1COMMIT_DMATOCLA1COMMIT_CLA1TODMARESERVEDRESERVEDCOMMIT_CLA1TOCPUCOMMIT_CPUTOCLA1COMMIT_CPUTOCPU_MSGRAM0
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-279 MSGxCOMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11COMMIT_DMATOCLA_MSGRAM1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for DMA2CLA MSG RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

10COMMIT_CLATODMA_MSGRAM0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for CLA2DMA MSG RAM:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

9COMMIT_CPUTOCM_MSGRAM1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for CPU2CM MSG RAM1:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

8COMMIT_CPUTOCM_MSGRAM0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for CPU2CM MSG RAM0:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

7COMMIT_CPUTOCPU_MSGRAM1R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for CPU2CPU MSG RAM1:
0: Write to INIT fields are allowed.
1: Write to INIT fields are blocked.

Reset type: SYSRSn

6COMMIT_DMATOCLA1R/WSonce0h 0: Write to, INIT fields are allowed.
1: Write to, INIT fields are blocked.

Reset type: SYSRSn

5COMMIT_CLA1TODMAR/WSonce0h 0: Write to, INIT fields are allowed.
1: Write to, INIT fields are blocked.

Reset type: SYSRSn

4RESERVEDR/WSonce0hReserved
3RESERVEDR/WSonce0hReserved
2COMMIT_CLA1TOCPUR/WSonce0hLocks the write to access protection, master select, initialization control and test register fields for CLA1TOCPU RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

1COMMIT_CPUTOCLA1R/WSonce0hLocks the write to access protection, master select, initialization control and test register fields for CPUTOCLA1 RAM:
0: Write to ACCPROT, INIT and Mselect fields are allowed.
1: Write to ACCPROT, INIT and Mselect fields are blocked.

Reset type: SYSRSn

0COMMIT_CPUTOCPU_MSGRAM0R/WSonce0hPermanently Locks the write to access protection, master select, initialization control and test register fields for D0 RAM:
0: Write to ACCPROT, INIT fields are allowed based on value of lock field in MSGxLOCK register.
1: Write to ACCPROT, INIT are permanently blocked.

Reset type: SYSRSn

3.16.11.31 MSGxACCPROT0 Register (Offset = 68h) [Reset = 00000000h]

MSGxACCPROT0 is shown in Figure 3-264 and described in Table 3-280.

Return to the Summary Table.

Message RAM Access Protection Register 0

Figure 3-264 MSGxACCPROT0 Register
3130292827262524
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDDMAWRPROT_CPUTOCPU_MSGRAM0CPUWRPROT_CPUTOCPU_MSGRAM0RESERVED
R-0hR/W-0hR/W-0hR/W-0h
Table 3-280 MSGxACCPROT0 Register Field Descriptions
BitFieldTypeResetDescription
31-27RESERVEDR0hReserved
26RESERVEDR/W0hReserved
25RESERVEDR/W0hReserved
24RESERVEDR/W0hReserved
23-19RESERVEDR0hReserved
18RESERVEDR/W0hReserved
17RESERVEDR/W0hReserved
16RESERVEDR/W0hReserved
15-11RESERVEDR0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7-3RESERVEDR0hReserved
2DMAWRPROT_CPUTOCPU_MSGRAM0R/W0hDMA WR Protection For CPUTOCPU_MSGRAM0 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

1CPUWRPROT_CPUTOCPU_MSGRAM0R/W0hCPU WR Protection For CPUTOCPU_MSGRAM0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0RESERVEDR/W0hReserved

3.16.11.32 MSGxACCPROT1 Register (Offset = 6Ah) [Reset = 00000000h]

MSGxACCPROT1 is shown in Figure 3-265 and described in Table 3-281.

Return to the Summary Table.

Message RAM Access Protection Register 1

Figure 3-265 MSGxACCPROT1 Register
3130292827262524
RESERVEDDMAWRPROT_CPUTOCPU_MSGRAM1CPUWRPROT_CPUTOCPU_MSGRAM1RESERVED
R-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
Table 3-281 MSGxACCPROT1 Register Field Descriptions
BitFieldTypeResetDescription
31-27RESERVEDR0hReserved
26DMAWRPROT_CPUTOCPU_MSGRAM1R/W0hDMA WR Protection For CPUTOCPU_MSGRAM1 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

25CPUWRPROT_CPUTOCPU_MSGRAM1R/W0hCPU WR Protection For CPUTOCPU_MSGRAM1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

24RESERVEDR/W0hReserved
23-19RESERVEDR0hReserved
18RESERVEDR/W0hReserved
17RESERVEDR/W0hReserved
16RESERVEDR/W0hReserved
15-11RESERVEDR0hReserved
10RESERVEDR/W0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR/W0hReserved
7-3RESERVEDR0hReserved
2RESERVEDR/W0hReserved
1RESERVEDR/W0hReserved
0RESERVEDR/W0hReserved

3.16.11.33 MSGxACCPROT2 Register (Offset = 6Ch) [Reset = 00000000h]

MSGxACCPROT2 is shown in Figure 3-266 and described in Table 3-282.

Return to the Summary Table.

Message RAM Access Protection Register 2

Figure 3-266 MSGxACCPROT2 Register
3130292827262524
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
2322212019181716
RESERVEDRESERVEDRESERVEDRESERVED
R-0hR/W-0hR/W-0hR/W-0h
15141312111098
RESERVEDDMAWRPROT_CPUTOCM_MSGRAM1CPUWRPROT_CPUTOCM_MSGRAM1RESERVED
R-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDDMAWRPROT_CPUTOCM_MSGRAM0CPUWRPROT_CPUTOCM_MSGRAM0RESERVED
R-0hR/W-0hR/W-0hR/W-0h
Table 3-282 MSGxACCPROT2 Register Field Descriptions
BitFieldTypeResetDescription
31-27RESERVEDR0hReserved
26RESERVEDR/W0hReserved
25RESERVEDR/W0hReserved
24RESERVEDR/W0hReserved
23-19RESERVEDR0hReserved
18RESERVEDR/W0hReserved
17RESERVEDR/W0hReserved
16RESERVEDR/W0hReserved
15-11RESERVEDR0hReserved
10DMAWRPROT_CPUTOCM_MSGRAM1R/W0hDMA WR Protection For CPUTOCM_MSGRAM1 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

9CPUWRPROT_CPUTOCM_MSGRAM1R/W0hCPU WR Protection For CPUTOCM_MSGRAM1 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

8RESERVEDR/W0hReserved
7-3RESERVEDR0hReserved
2DMAWRPROT_CPUTOCM_MSGRAM0R/W0hDMA WR Protection For CPUTOCM_MSGRAM0 RAM:
0: DMA Writes are allowed.
1: DMA Writes are blocked.

Reset type: SYSRSn

1CPUWRPROT_CPUTOCM_MSGRAM0R/W0hCPU WR Protection For CPUTOCM_MSGRAM0 RAM:
0: CPU Writes are allowed.
1: CPU Writes are blocked.

Reset type: SYSRSn

0RESERVEDR/W0hReserved

3.16.11.34 MSGxTEST Register (Offset = 70h) [Reset = 00000000h]

MSGxTEST is shown in Figure 3-267 and described in Table 3-283.

Return to the Summary Table.

Message RAM TEST Register

Figure 3-267 MSGxTEST Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVEDRESERVEDTEST_CPUTOCM_MSGRAM1TEST_CPUTOCM_MSGRAM0
R/W-0hR/W-0hR/W-0hR/W-0h
15141312111098
TEST_CPUTOCPU_MSGRAM1TEST_DMATOCLA1TEST_CLA1TODMARESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDTEST_CLA1TOCPUTEST_CPUTOCLA1TEST_CPUTOCPU_MSGRAM0
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-283 MSGxTEST Register Field Descriptions
BitFieldTypeResetDescription
31-24RESERVEDR0hReserved
23-22RESERVEDR/W0hReserved
21-20RESERVEDR/W0hReserved
19-18TEST_CPUTOCM_MSGRAM1R/W0hSelects the defferent modes for CPUTOCM MSG RAM1:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

17-16TEST_CPUTOCM_MSGRAM0R/W0hSelects the defferent modes for CPUTOCM MSG RAM0:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

15-14TEST_CPUTOCPU_MSGRAM1R/W0hSelects the defferent modes for CPUTOCPU MSG RAM0:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

13-12TEST_DMATOCLA1R/W0hSelects the defferent modes for DMATOCLA1 MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

11-10TEST_CLA1TODMAR/W0hSelects the defferent modes for CLA1TODMA MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

9-8RESERVEDR/W0hReserved
7-6RESERVEDR/W0hReserved
5-4TEST_CLA1TOCPUR/W0hSelects the defferent modes for CLA1TOCPU MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3-2TEST_CPUTOCLA1R/W0hSelects the defferent modes for CPUTOCLA1 MSG RAM:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

1-0TEST_CPUTOCPU_MSGRAM0R/W0hSelects the defferent modes for CPUTOCPU MSG RAM0:
00: Functional Mode.
01: Writes are allowed to data bits only. No write to parity bits.
10: Writes are allowed to parity bits only. No write to data bits.
11: Same as functional mode, but interrupt/nmi is not generated on error.
Note: Any non zero value would enable CPU writes over-riding write access protection if any and will not generate a access protection violation.

Reset type: SYSRSn

3.16.11.35 MSGxINIT Register (Offset = 72h) [Reset = 00000000h]

MSGxINIT is shown in Figure 3-268 and described in Table 3-284.

Return to the Summary Table.

Message RAM Init Register

Figure 3-268 MSGxINIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDINIT_CPUTOCM_MSGRAM1INIT_CPUTOCM_MSGRAM0
R-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
76543210
INIT_CPUTOCPU_MSGRAM1INIT_DMATOCLA1INIT_CLA1TODMARESERVEDRESERVEDINIT_CLA1TOCPUINIT_CPUTOCLA1INIT_CPUTOCPU_MSGRAM0
R-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0hR-0/W1S-0h
Table 3-284 MSGxINIT Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11RESERVEDR-0/W1S0hReserved
10RESERVEDR-0/W1S0hReserved
9INIT_CPUTOCM_MSGRAM1R-0/W1S0hRAM Initialization control for CPUTOCM MSG RAM1:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

8INIT_CPUTOCM_MSGRAM0R-0/W1S0hRAM Initialization control for CPUTOCM MSG RAM0:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

7INIT_CPUTOCPU_MSGRAM1R-0/W1S0hRAM Initialization control for CPUTOCPU MSG RAM1:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

6INIT_DMATOCLA1R-0/W1S0hRAM Initialization control for DMATOCLA1 MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

5INIT_CLA1TODMAR-0/W1S0hRAM Initialization control for CLA1TODMA MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

4RESERVEDR-0/W1S0hReserved
3RESERVEDR-0/W1S0hReserved
2INIT_CLA1TOCPUR-0/W1S0hRAM Initialization control for CLA1TOCPU MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

1INIT_CPUTOCLA1R-0/W1S0hRAM Initialization control for CPUTOCLA1 MSG RAM:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

0INIT_CPUTOCPU_MSGRAM0R-0/W1S0hRAM Initialization control for CPUTOCPU MSG RAM0:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

3.16.11.36 MSGxINITDONE Register (Offset = 74h) [Reset = 00000000h]

MSGxINITDONE is shown in Figure 3-269 and described in Table 3-285.

Return to the Summary Table.

Message RAM InitDone Status Register

Figure 3-269 MSGxINITDONE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDRESERVEDRESERVEDINITDONE_CPUTOCM_MSGRAM1INITDONE_CPUTOCM_MSGRAM0
R-0hR-0hR-0hR-0hR-0h
76543210
INITDONE_CPUTOCPU_MSGRAM1INITDONE_DMATOCLA1INITDONE_CLA1TODMARESERVEDRESERVEDINITDONE_CLA1TOCPUINITDONE_CPUTOCLA1INITDONE_CPUTOCPU_MSGRAM0
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 3-285 MSGxINITDONE Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0hReserved
11RESERVEDR0hReserved
10RESERVEDR0hReserved
9INITDONE_CPUTOCM_MSGRAM1R0hRAM Initialization status for CPUTOCM MSG RAM1:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

8INITDONE_CPUTOCM_MSGRAM0R0hRAM Initialization status for CPUTOCM MSG RAM0:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

7INITDONE_CPUTOCPU_MSGRAM1R0hRAM Initialization status for CPUTOCPU MSG RAM1:
0: None.
1: Start RAM Initialization.

Reset type: SYSRSn

6INITDONE_DMATOCLA1R0hRAM Initialization status for DMATOCLA1 MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

5INITDONE_CLA1TODMAR0hRAM Initialization status for CLA1TODMA MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

4RESERVEDR0hReserved
3RESERVEDR0hReserved
2INITDONE_CLA1TOCPUR0hRAM Initialization status for CLA1TOCPU MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

1INITDONE_CPUTOCLA1R0hRAM Initialization status for CPUTOCLA1 MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

0INITDONE_CPUTOCPU_MSGRAM0R0hRAM Initialization status for CPUTOCPU MSG RAM:
0: RAM Initialization is not done.
1: RAM Initialization is done.

Reset type: SYSRSn

3.16.11.37 MSGxRAMTEST_LOCK Register (Offset = 76h) [Reset = 00000000h]

MSGxRAMTEST_LOCK is shown in Figure 3-270 and described in Table 3-286.

Return to the Summary Table.

Lock register to MSGx RAM TEST registers

Figure 3-270 MSGxRAMTEST_LOCK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVEDDMATOCLA2CLA2TODMACPUTOCM_MSGRAM1CPUTOCM_MSGRAM0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
CPUTOCPU_MSGRAM1DMATOCLA1CLA1TODMACLA2TOCPUCPUTOCLA2CLA1TOCPUCPUTOCLA1CPUTOCPU_MSGRAM0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-286 MSGxRAMTEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-12RESERVEDR0hReserved
11DMATOCLA2R/W0h0: Allows writes to MSGxTEST.TEST_DMATOCLA2 field.
1: Blocks writes to MSGxTEST.TEST_DMATOCLA2 field.

Reset type: SYSRSn

10CLA2TODMAR/W0h0: Allows writes to MSGxTEST.TEST_CLA2TODMA field.
1: Blocks writes to MSGxTEST.TEST_CLA2TODMA field.

Reset type: SYSRSn

9CPUTOCM_MSGRAM1R/W0h0: Allows writes to MSGxTEST.TEST_CPUTOCM_MSGRAM1 field.
1: Blocks writes to MSGxTEST.TEST_CPUTOCM_MSGRAM1 field.

Reset type: SYSRSn

8CPUTOCM_MSGRAM0R/W0h0: Allows writes to MSGxTEST.TEST_CPUTOCM_MSGRAM0 field.
1: Blocks writes to MSGxTEST.TEST_CPUTOCM_MSGRAM0 field.

Reset type: SYSRSn

7CPUTOCPU_MSGRAM1R/W0h0: Allows writes to MSGxTEST.TEST_CPUTOCPU_MSGRAM1 field.
1: Blocks writes to MSGxTEST.TEST_CPUTOCPU_MSGRAM1 field.

Reset type: SYSRSn

6DMATOCLA1R/W0h0: Allows writes to MSGxTEST.TEST_DMATOCLA1 field.
1: Blocks writes to MSGxTEST.TEST_DMATOCLA1 field.

Reset type: SYSRSn

5CLA1TODMAR/W0h0: Allows writes to MSGxTEST.TEST_CLA1TODMA field.
1: Blocks writes to MSGxTEST.TEST_CLA1TODMA field.

Reset type: SYSRSn

4CLA2TOCPUR/W0h0: Allows writes to MSGxTEST.TEST_CLA2TOCPU field.
1: Blocks writes to MSGxTEST.TEST_CLA2TOCPU field.

Reset type: SYSRSn

3CPUTOCLA2R/W0h0: Allows writes to MSGxTEST.TEST_CPUTOCLA2 field.
1: Blocks writes to MSGxTEST.TEST_CPUTOCLA2 field.

Reset type: SYSRSn

2CLA1TOCPUR/W0h0: Allows writes to MSGxTEST.TEST_CLA1TOCPU field.
1: Blocks writes to MSGxTEST.TEST_CLA1TOCPU field.

Reset type: SYSRSn

1CPUTOCLA1R/W0h0: Allows writes to MSGxTEST.TEST_CPUTOCLA1 field.
1: Blocks writes to MSGxTEST.TEST_CPUTOCLA1 field.

Reset type: SYSRSn

0CPUTOCPU_MSGRAM0R/W0h0: Allows writes to MSGxTEST.TEST_CPUTOCPU_MSGRAM0 field.
1: Blocks writes to MSGxTEST.TEST_CPUTOCPU_MSGRAM0 field.

Reset type: SYSRSn

3.16.11.38 ROM_LOCK Register (Offset = A0h) [Reset = 00000000h]

ROM_LOCK is shown in Figure 3-271 and described in Table 3-287.

Return to the Summary Table.

ROM Config Lock Register

Figure 3-271 ROM_LOCK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK_CLADATAROMLOCK_SECUREROMLOCK_BOOTROM
R-0hR/W-0hR/W-0hR/W-0h
Table 3-287 ROM_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-3RESERVEDR0hReserved
2LOCK_CLADATAROMR/W0hLocks write access to test control fields (TEST and FORCE_ERROR) of CLADATAROM
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

1LOCK_SECUREROMR/W0hLocks write access to test control fields (TEST and FORCE_ERROR) of SECUREROM
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

0LOCK_BOOTROMR/W0hLocks write access to test control fields (TEST and FORCE_ERROR) of BOOTROM
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

3.16.11.39 ROM_TEST Register (Offset = A2h) [Reset = 00000000h]

ROM_TEST is shown in Figure 3-272 and described in Table 3-288.

Return to the Summary Table.

ROM TEST Register

Figure 3-272 ROM_TEST Register
3130292827262524
RESERVED
R/W-0h
2322212019181716
RESERVED
R/W-0h
15141312111098
RESERVED
R/W-0h
76543210
RESERVEDTEST_CLADATAROMTEST_SECUREROMTEST_BOOTROM
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-288 ROM_TEST Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR/W0hReserved
5-4TEST_CLADATAROMR/W0hSelects the different modes for CLADATAROM:
00: Functional Mode.
01: same as '00' but Parity check on data read is disabled (for debug)
10: Parity Bits are visible on memory map (for debug)
11: Same as '00' but NMI is not generated on errors, used for diagnostics. (for diagnostics)

Reset type: SYSRSn

3-2TEST_SECUREROMR/W0hSelects the different modes for SECUREROM:
00: Functional Mode.
01: same as '00' but Parity check on data read is disabled (for debug)
10: Parity Bits are visible on memory map (for debug)
11: Same as '00' but NMI is not generated on errors, used for diagnostics. (for diagnostics)

Reset type: SYSRSn

1-0TEST_BOOTROMR/W0hSelects the different modes for BOOTROM:
00: Functional Mode.
01: same as '00' but Parity check on data read is disabled (for debug)
10: Parity Bits are visible on memory map (for debug)
11: Same as '00' but NMI is not generated on errors, used for diagnostics. (for diagnostics)

Reset type: SYSRSn

3.16.11.40 ROM_FORCE_ERROR Register (Offset = A4h) [Reset = 00000000h]

ROM_FORCE_ERROR is shown in Figure 3-273 and described in Table 3-289.

Return to the Summary Table.

ROM Force Error register

Figure 3-273 ROM_FORCE_ERROR Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDFORCE_CLADATAROM_ERRORFORCE_SECUREROM_ERRORFORCE_BOOTROM_ERROR
R-0hR/W-0hR/W-0hR/W-0h
Table 3-289 ROM_FORCE_ERROR Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-3RESERVEDR0hReserved
2FORCE_CLADATAROM_ERRORR/W0hForce parity error by feeding inverted Parity bit to Parity checking logic.

Reset type: SYSRSn

1FORCE_SECUREROM_ERRORR/W0hForce parity error by feeding inverted Parity bit to Parity checking logic.

Reset type: SYSRSn

0FORCE_BOOTROM_ERRORR/W0hForce parity error by feeding inverted Parity bit to Parity checking logic.

Reset type: SYSRSn

3.16.11.41 PERI_MEM_TEST_LOCK Register (Offset = AAh) [Reset = 00000000h]

PERI_MEM_TEST_LOCK is shown in Figure 3-274 and described in Table 3-290.

Return to the Summary Table.

Peripheral Memory Test Lock Register

Figure 3-274 PERI_MEM_TEST_LOCK Register
3130292827262524
KEY
R-0/W-0h
2322212019181716
KEY
R-0/W-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK_PERI_MEM_TEST_CONTROL
R-0hR/W-0h
Table 3-290 PERI_MEM_TEST_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16KEYR-0/W0hA value of 0xa5a5 to this field is simultaneously required for the writes to the rest of the fields of this register to succeed,

Reset type: SYSRSn

15-1RESERVEDR0hReserved
0LOCK_PERI_MEM_TEST_CONTROLR/W0hLocks write access to register PERI_MEM_TEST_CONTROL
0: Write access allowed
1: Write access blocked

Reset type: SYSRSn

3.16.11.42 PERI_MEM_TEST_CONTROL Register (Offset = ACh) [Reset = 00000000h]

PERI_MEM_TEST_CONTROL is shown in Figure 3-275 and described in Table 3-291.

Return to the Summary Table.

Peripheral Memory Test control Register

Figure 3-275 PERI_MEM_TEST_CONTROL Register
3130292827262524
RESERVED
R/W-0h
2322212019181716
RESERVED
R/W-0h
15141312111098
RESERVED
R/W-0h
76543210
RESERVEDEtherCAT_MEM_FORCE_ERROREtherCAT_TEST_ENABLERESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-291 PERI_MEM_TEST_CONTROL Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR/W0hReserved
5EtherCAT_MEM_FORCE_ERRORR/W0hForce error bit
0 : No effect
1 : Parity bit going to Parity checker module of EtherCAT is inverted to introduce parity Error

Reset type: SYSRSn

4EtherCAT_TEST_ENABLER/W0hSelects EtherCAT test mode
0 : EtherCAT test mode disabled, Error on EtherCAT memory read access will generate NMI
1 : EtherCAT test mode enabled, Error on EtherCAT memory read access will NOT generate NMI, used for diagnostics

Reset type: SYSRSn

3RESERVEDR/W0hReserved
2RESERVEDR/W0hReserved
1RESERVEDR/W0hReserved
0RESERVEDR/W0hReserved