SPRUIV4D May   2020  – May 2024

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Related Documentation
    3.     Trademarks
  3. 2Introduction
    1. 2.1 C7000 Digital Signal Processor CPU Architecture Overview
    2. 2.2 C7000 Split Datapath and Functional Units
  4. 3C7000 C/C++ Compiler Options
    1. 3.1 Overview
    2. 3.2 Selecting Compiler Options for Performance
    3. 3.3 Understanding Compiler Optimization
      1. 3.3.1 Software Pipelining
      2. 3.3.2 Vectorization and Vector Predication
      3. 3.3.3 Automatic Use of Streaming Engine and Streaming Address Generator
      4. 3.3.4 Loop Collapsing and Loop Coalescing
      5. 3.3.5 Automatic Inlining
      6. 3.3.6 If Conversion
  5. 4Basic Code Optimization
    1. 4.1  Signed Types for Iteration Counters and Limits
    2. 4.2  Floating-Point Division
    3. 4.3  Loop-Carried Dependencies and the Restrict Keyword
      1. 4.3.1 Loop-Carried Dependencies
      2. 4.3.2 The Restrict Keyword
      3. 4.3.3 Run-Time Alias Disambiguation
    4. 4.4  Function Calls and Inlining
    5. 4.5  MUST_ITERATE and PROB_ITERATE Pragmas and Attributes
    6. 4.6  If Statements and Nested If Statements
    7. 4.7  Intrinsics
    8. 4.8  Vector Types
    9. 4.9  C++ Features to Use and Avoid
    10. 4.10 Streaming Engine
    11. 4.11 Streaming Address Generator
    12. 4.12 Optimized Libraries
    13. 4.13 Memory Optimizations
  6. 5Understanding the Assembly Comment Blocks
    1. 5.1 Software Pipelining Processing Stages
    2. 5.2 Software Pipeline Information Comment Block
      1. 5.2.1 Loop and Iteration Count Information
      2. 5.2.2 Dependency and Resource Bounds
      3. 5.2.3 Initiation Interval (ii) and Iterations
      4. 5.2.4 Constant Extensions
      5. 5.2.5 Resources Used and Register Tables
      6. 5.2.6 Stage Collapsing
      7. 5.2.7 Memory Bank Conflicts
      8. 5.2.8 Loop Duration Formula
    3. 5.3 Single Scheduled Iteration Comment Block
    4. 5.4 Identifying Pipeline Failures and Performance Issues
      1. 5.4.1 Issues that Prevent a Loop from Being Software Pipelined
      2. 5.4.2 Software Pipeline Failure Messages
      3. 5.4.3 Performance Issues
  7. 6Revision History

Loop-Carried Dependencies and the Restrict Keyword

To maximize the efficiency of generated code, the C7000 compiler schedules as many instructions as possible in parallel, especially during software pipelining. To schedule instructions in parallel, the compiler must determine the relationships, or dependencies, between instructions. Dependency means that one instruction must occur before another; for example, a variable must be loaded from memory before it can be used. Because only independent instructions can execute in parallel, dependencies inhibit parallelism.

  • If the compiler cannot determine that two instructions are independent, it assumes a dependency and schedules the two instructions sequentially accounting for any latencies needed to complete the first instruction.
  • If the compiler can determine that two instructions are independent of one another, it may be able to schedule them in parallel.