SPRUJ93 august   2023

 

  1.   1
  2.   Description
  3.   Features
  4.   4
  5. 1Evaluation Module Overview
    1.     Preface: Read This First
      1. 1.1.1 Sitara™ MCU+ Academy
      2. 1.1.2 If You Need Assistance
      3. 1.1.3 Important Usage Notes
    2. 1.1 Introduction
    3. 1.2 Kit Contents
    4. 1.3 Specification
    5. 1.4 Device Information
    6. 1.5 HSEC 180-pin Control Card Docking Station
    7. 1.6 Security
  6. 2Hardware
    1. 2.1  Functional Block Diagram
    2. 2.2  Component Identification
    3. 2.3  Power Requirements
      1. 2.3.1 Power Input Using USB Type-C Connector
      2. 2.3.2 Power Status LEDs
      3. 2.3.3 Power Tree
      4. 2.3.4 Power Sequence
      5. 2.3.5 PMIC
    4. 2.4  Reset
    5. 2.5  Clock
    6. 2.6  Boot Mode Selection
    7. 2.7  JTAG Path Selection
    8. 2.8  Header Information
    9. 2.9  GPIO Mapping
    10. 2.10 Push Buttons
    11. 2.11 Test Points
    12. 2.12 Interfaces
      1. 2.12.1  Memory Interface
        1. 2.12.1.1 QSPI
        2. 2.12.1.2 Board ID EEPROM
      2. 2.12.2  Ethernet Interface
        1. 2.12.2.1 RGMII
        2. 2.12.2.2 PRU-ICSS
        3. 2.12.2.3 LED Indication in RJ45 Connector
      3. 2.12.3  I2C
      4. 2.12.4  Industrial Application LEDs
      5. 2.12.5  SPI
      6. 2.12.6  UART
      7. 2.12.7  MCAN
      8. 2.12.8  FSI
      9. 2.12.9  JTAG
      10. 2.12.10 Test Automation Header
      11. 2.12.11 LIN
      12. 2.12.12 MMC
      13. 2.12.13 ADC and DAC
    13. 2.13 HSEC Pinout and Pinmux Mapping
  7. 3Software
    1. 3.1 SDK Installation
  8. 4Hardware Design Files
  9. 5Additional Information
    1. 5.1 Trademarks
    2. 5.2 E1 Design Hardware Modifications
  10. 6References
    1. 6.1 Reference Documents
    2. 6.2 Other TI Components Used in This Design

MCAN

The Control Card is equipped with a single MCAN transceiver (TCAN1024H-Q1) that is connected to the MCAN1 interface of the AM263x SoC. The MCAN0 interface of the AM263x SoC is mapped directly to the HSEC connector.

GUID-20230515-SS0I-9WWJ-TBDL-WVKX2JBZFKK4-low.png Figure 2-28 MCAN Transceiver

The MCAN transceiver has two power inputs, VIO is the transceiver I/O level shifting supply voltage and VCC is the transceiver 5 V supply voltage. The SoC CAN data transmit data input is mapped to TXD of the transceiver and the CAN receive data output of the transceiver is mapped to the MCAN RX signal of the SoC with a series termination resistor close to the transceiver.

The standby control signal is a GPIO signal sourced from the IO expander. The STB control input is active high and a pulldown resistor is used to have the transceiver operate in normal mode as opposed to the standby mode that is default due to a weak internal pull up.

The system has a 120 Ω split termination on the CANH and CANL signals to improve EMI performance. Split termination improves the electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common-mode voltages at the start and end of message transmissions.

The low- and high-level CAN bus input output lines are terminated to a three pin header.