SPRUJF4 October   2024

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5.   5
  6. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
    5.     General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  7. 2Hardware
    1. 2.1 Hardware Description
      1. 2.1.1 Auxiliary Power Supply
      2. 2.1.2 DC Link Voltage Sensing
      3. 2.1.3 Motor Phase Voltage Sensing
      4. 2.1.4 Motor Phase Current Sensing
        1. 2.1.4.1 Three-Shunt Current Sensing
        2. 2.1.4.2 Single-Shunt Current Sensing
      5. 2.1.5 External Overcurrent Protection
      6. 2.1.6 Internal Overcurrent Protection for TMS320F2800F137
    2. 2.2 Getting Started Hardware
      1. 2.2.1 Test Conditions and Equipment
      2. 2.2.2 Test Setup
  8. 3Motor Control Software
    1. 3.1 Three-Phase PMSM Drive System Design Theory
      1. 3.1.1 Field-Oriented Control of PMSM
        1. 3.1.1.1 Space Vector Definition and Projection
          1. 3.1.1.1.1 ( a ,   b ) ⇒ ( α , β ) Clarke Transformation
          2. 3.1.1.1.2 ( α , β ) ⇒ ( d ,   q ) Park Transformation
        2. 3.1.1.2 Basic Scheme of FOC for AC Motor
        3. 3.1.1.3 Rotor Flux Position
      2. 3.1.2 Sensorless Control of PM Synchronous Motor
        1. 3.1.2.1 Enhanced Sliding Mode Observer With Phase-Locked Loop
          1. 3.1.2.1.1 Mathematical Model and FOC Structure of an IPMSM
          2. 3.1.2.1.2 Design of ESMO for the IPMS
            1. 3.1.2.1.2.1 Rotor Position and Speed Estimation With PLL
      3. 3.1.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
    2. 3.2 Getting Started Software
      1. 3.2.1 Download and Install C2000 Software
      2. 3.2.2 Using the Software
      3. 3.2.3 Project Structure
  9. 4Test Procedure and Results
    1. 4.1 Build Level 1: CPU and Board Setup
    2. 4.2 Build Level 2: Open-Loop Check With ADC Feedback
    3. 4.3 Build Level 3: Closed Current Loop Check
    4. 4.4 Build Level 4: Full Motor Drive Control
    5. 4.5 Test Procedure
      1. 4.5.1 Startup
      2. 4.5.2 Build and Load Project
      3. 4.5.3 Setup Debug Environment Windows
      4. 4.5.4 Run the Code
        1. 4.5.4.1 Build Level 1 Test Procedure
        2. 4.5.4.2 Build Level 2 Test Procedure
        3. 4.5.4.3 Build Level 3 Test Procedure
        4. 4.5.4.4 Build Level 4 Test Procedure
          1. 4.5.4.4.1 Tuning Motor Drive FOC Parameters
          2. 4.5.4.4.2 Tuning Field Weakening and MTPA Control Parameters
          3. 4.5.4.4.3 Tuning Current Sensing Parameters
    6. 4.6 Performance Data and Results
      1. 4.6.1 Load and Thermal Test
      2. 4.6.2 Overcurrent Protection by External Comparator
      3. 4.6.3 Overcurrent Protection by Internal CMPSS
  10. 5Hardware Design Files
    1. 5.1 Schematics
    2. 5.2 PCB Layouts
    3. 5.3 Bill of Materials (BOM)
  11. 6Additional Information
    1. 6.1 Known Hardware or Software Issues
    2. 6.2 Trademarks
    3. 6.3 Terminology
  12. 7References

Three-Phase PMSM Drive System Design Theory

In order to properly explain the software of the TIEVM-MTR-HVINV, background knowledge is required. Broadly speaking, it is important to understand both the basic theory of a three-phase PMSM motor drive system, as well as how sensorless FOC control fits into that system.

A Permanent Magnet Synchronous motor (PMSM) has a wound stator, a permanent magnet rotor assembly, and internal or external mechanisms to sense rotor position. The sensing mechanisms provide position feedback for adjusting frequency and amplitude of stator voltage reference properly to maintain rotation of the magnet assembly. The combination of an inner permanent magnet rotor and outer windings offers the advantages of low rotor inertia, efficient heat dissipation, and reduction of the motor size.

  • Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a constant rotor flux. This rotor flux usually has a constant magnitude. When energized, the stator windings create a rotating electromagnetic field. To control the rotating magnetic field, the stator currents must be controlled.
  • The actual structure of the rotor varies depending on the rated power range and speed of the machine. Permanent magnets are an excellent choice for synchronous machines ranging up to a few Kilowatts. For higher power ratings the rotor usually consists of windings in which a DC current circulates. The mechanical structure of the rotor is designed for the flux gradients and number of poles desired.
  • The interaction between the stator and rotor fluxes produces torque. Since the stator is firmly mounted to the frame, and the rotor is free to rotate, the rotor rotates, producing a useful mechanical output as shown in Figure 3-1.
  • The angle between the rotor magnetic field and stator field must be carefully controlled to produce maximum torque and achieve high electromechanical conversion efficiency. For this purpose fine-tuning is needed after closing the speed loop using a sensorless algorithm to draw the minimum amount of current under the same speed and torque conditions.
  • The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field; otherwise, the rotor experiences rapidly alternating positive and negative torque. This results in less than excellent torque production, and excessive mechanical vibration, noise, and mechanical stresses on the machine parts. In addition, if the rotor inertia prevents the rotor from being able to respond to these oscillations, the rotor stops rotating at the synchronous frequency, and responds to the average torque as seen by the stationary rotor: Zero. This means that the machine experiences a phenomenon known as pull-out. This is also the reason why the synchronous machine is not self starting.
  • The angle between the rotor field and the stator field must be equal to 90º to obtain the highest mutual torque production. This synchronization requires knowing the rotor position to generate the right stator field.
  • The stator magnetic field can be made to have any direction and magnitude by combining the contribution of different stator phases to produce the resulting stator flux.
TIEVM-MTR-HVINV Interaction Between the Rotating Stator Flux and the Rotor Flux Produces TorqueFigure 3-1 Interaction Between the Rotating Stator Flux and the Rotor Flux Produces Torque