SPRZ496D October   2021  – May 2024 TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1

 

  1.   1
  2.   TMS320F28003x Real-Time MCUs Silicon ErrataSilicon Revision 0
  3. 1Usage Notes and Advisories Matrices
    1. 1.1 Usage Notes Matrix
    2. 1.2 Advisories Matrix
  4. 2Nomenclature, Package Symbolization, and Revision Identification
    1. 2.1 Device and Development-Support Tool Nomenclature
    2. 2.2 Devices Supported
    3. 2.3 Package Symbolization and Revision Identification
  5. 3Silicon Revision 0 Usage Notes and Advisories
    1. 3.1 Silicon Revision 0 Usage Notes
      1. 3.1.1 PIE: Spurious Nested Interrupt After Back-to-Back PIEACK Write and Manual CPU Interrupt Mask Clear
      2. 3.1.2 Caution While Using Nested Interrupts
      3. 3.1.3 Security: The primary layer of defense is securing the boundary of the chip, which begins with enabling JTAGLOCK and Zero-pin Boot to Flash feature
    2. 3.2 Silicon Revision 0 Advisories
      1. 3.2.1  Advisory
      2.      Advisory
      3.      Advisory
      4. 3.2.2  Advisory
      5.      Advisory
      6.      Advisory
      7.      Advisory
      8.      Advisory
      9. 3.2.3  Advisory
      10.      Advisory
      11. 3.2.4  Advisory
      12.      Advisory
      13.      Advisory
      14.      Advisory
      15. 3.2.5  Advisory
      16.      Advisory
      17. 3.2.6  Advisory
      18. 3.2.7  Advisory
      19.      Advisory
      20. 3.2.8  Advisory
      21.      Advisory
      22. 3.2.9  Advisory
      23. 3.2.10 Advisory
      24.      Advisory
      25.      Advisory
      26.      Advisory
      27.      Advisory
  6. 4Documentation Support
  7. 5Trademarks
  8. 6Revision History

Advisory

ADC: Interrupts may Stop if INTxCONT (Continue-to-Interrupt Mode) is not Set

Revision Affected

0

Details

If ADCINTSELxNx[INTxCONT] = 0, then interrupts will stop when the ADCINTFLG is set and no additional ADC interrupts will occur.

When an ADC interrupt occurs simultaneously with a software write of the ADCINTFLGCLR register, the ADCINTFLG will unexpectedly remain set, blocking future ADC interrupts.

Workaround

  1. Use Continue-to-Interrupt Mode to prevent the ADCINTFLG from blocking additional ADC interrupts:
    
    ADCINTSEL1N2[INT1CONT] = 1;
    ADCINTSEL1N2[INT2CONT] = 1;
    ADCINTSEL3N4[INT3CONT] = 1;
    ADCINTSEL3N4[INT4CONT] = 1;
    
  2. Ensure there is always sufficient time to service the ADC ISR and clear the ADCINTFLG before the next ADC interrupt occurs to avoid this condition.
  3. Check for an overflow condition in the ISR when clearing the ADCINTFLG. Check ADCINTOVF immediately after writing to ADCINTFLGCLR; if it is set, then write ADCINTFLGCLR a second time to ensure the ADCINTFLG is cleared. The ADCINTOVF register will be set, indicating an ADC conversion interrupt was lost.
    
    AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;        //clear INT1 flag
    if(1 == AdcaRegs.ADCINTOVF.bit.ADCINT1)       //ADCINT overflow
    {
        AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;    //clear INT1 again
    // If the ADCINTOVF condition will be ignored by the application
    // then clear the flag here by writing 1 to ADCINTOVFCLR.  
    // If there is a ADCINTOVF handling routine, then either insert 
    // that code and clear the ADCINTOVF flag here or do not clear 
    // the ADCINTOVF here so the external routine will detect the 
    // condition.
    //    AdcaRegs.ADCINTOVFCLR.bit.ADCINT1 = 1;  // clear OVF
    }