Dalton Ortega
My last technical article, “Automating smart home systems with motor drivers,” explored how motorized applications like video doorbells and smart locks provide a sense of security and convenience. In this article, I’ll address some key design challenges for motorized systems in window blinds, which are used to make opening and closing blinds super-fast and easy, and to also reduce air conditioning and heating costs.
One of the fundamental design challenges with motorized blinds, curtains and shades is knowing the position of the blind and when you have reached an end-point. This is important to keep system noise low, and to protect the motor from overdriving past the mechanical stop points. These systems often use dedicated position sensors like Hall-effect sensors or optical encoders that provide this feedback to a system’s microcontroller, but they require additional board space and increase bill-of-materials (BOM) costs.
Another way to achieve closed-loop feedback is to use the current sensed in the motor’s windings. Analyzing a brushed-DC motor’s current profile can help determine relative speed and position and detect stalled motor conditions. During commutation, the brushes in the brushed-DC motor make and break contact with the commutator, which creates ripples in the current waveform, as shown in Figure 1. This sensorless speed and position control method is known as ripple counting. Knowing the total number of poles in the brushed-DC motor makes it possible to infer its speed and relative position.
You can also use current-sense feedback to detect mechanical home position and end-points of blinds, curtains and shades, also known as stall points. Figure 2 shows a typical brushed-DC current waveform during movement, from start to end-point. The microcontroller can read this current feedback, sense the stall current threshold (as it is much higher than continuous current through normal motion) and stop the motor.
The DRV8701 has an integrated current-sense amplifier that reads voltage drops across a current-sense resistor and sends this signal to a microcontroller’s analog-to-digital converter (ADC). The DRV8873, DRV8874 and DRV8876 have an integrated current-sense feedback mechanism through the IPROPI pin. Integrated current sensing eliminates the need for an external current-sense resistor and amplifier.
In order to remain aesthetically pleasing in offices, homes and hotels, these motorized systems are often encased in the same housing as the blinds, creating size constraints for the electronics and heat issues. In addition, these systems are often connected to smart home hubs via Bluetooth®, Wi-Fi® or other wireless connectivity, so reducing electromagnetic interference (EMI) is critical in order to ensure proper function.
One method to address the need for good thermal dissipation and reduced EMI is to find the right balance for the rise and fall time of the metal-oxide semiconductor field-effect transistors (MOSFETs) turning on and off, also known as the slew rate. If the slew rate is too long, the MOSFET’s turnon time is longer, drawing more power and dissipating more heat. If the slew rate is too short, it may introduce EMI, impacting the connectivity systems. Typically, you’ll need source and sink resistors and diodes to control the slew rate, as shown in Figure 3, but that affects cost and board space.
TI motor drivers like the DRV8873 and DRV8701 have integrated slew-rate IDRIVE control settings through a configurable series of internal pre-driver circuits, saving board space and BOM cost. As shown in Figure 4, the IDRIVE settings enable easy tuning of this slew rate, providing optimal performance and trade-offs between size, heat dissipation and EMI reduction without the need for passive components.
The DRV8873, DRV8874 and DRV8876 also have spread-spectrum clocking for the internal charge pump and oscillator. Combined with slew-rate control IDRIVE settings, these devices can minimize EMI.
Motorized blinds, shutters and curtains have different sizes and torque requirements, depending on the weight of the system. Having motor-driver options that can scale in current rating makes designs quicker, reusable and cheaper.
The easiest way to reuse designs and scale across multiple platform requirements is to use pin-to-pin-compatible motor drivers. The 38-V, 3.5-A DRV8876 H-bridge and 38-V, 6-A DRV8874 H-bridge motor drivers are pin-to-pin across current levels, and can drive battery- or line-powered 12-V or 24-V systems, making them a flexible solution for many voltage and current requirements.
The DRV8701 smart gate driver can be paired with external MOSFETs with appropriately sized on-resistance to deliver the torque required. If you are developing a new product with different current or torque requirements, you can reuse the DRV8701 driver, layout, protection, diagnostics and software from an existing design and only replace the MOSFETs.
Using these pin-to-pin devices or smart gate drivers is an effective way to reduce design time and cut development costs.
Whether designing motorized blinds, curtains, shades or shutters for homes, offices or hotels, TI has several motor drivers and motor-drive technologies to meet the key design challenges of size and heat dissipation, reducing EMI radiation and scalability.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated