Sandeep Tallada
During my first visit to the U.S., my brother and I drove from New York City to Columbus, Ohio. Although the 650-KM (400-mile) journey was long, our car’s automatic transmission and cruise control made the trip more comfortable. The effectiveness of an automatic transmission and cruise control relies on the precise control of proportional solenoids and motors, which is made possible with accurate current measurement.
Proportional solenoids convert electrical signals into a proportional mechanical force, which allows variance in armature position and force relative to the level of current. Proportional solenoids are used in automotive applications such as automatic transmissions, fuel injection systems, pistons and valves to accurately control position or flow. Controlling proportional solenoids precisely is highly dependent on the accuracy of the position estimation over the automotive temperature range. In general, measurement is used to provide position for proportional solenoids.
As shown in Figure 1, a shunt resistor is inserted in between the switch and the solenoid. The low-ohmic shunt is inserted in such a way to create a low resistance path as well as safely measure and accommodate recirculation current flows. An amplifier in a differential configuration or current sense amplifier is connected to the shunt to measure the current.
A pulse width modulation (PWM) signal operates the high-side switch. When the PWM is high, the battery connects to the solenoid and current flows. When the PWM is low, the battery disconnects from the solenoid and recirculation current flows through the flyback diode.
The control of the PWM frequency and duty-cycle percentage determines the resulting average current in the solenoid, which in turn controls the force applied to the actuator.
Nominal current ranges for solenoids vary from device to device. Because of differing current range needs, current sense amplifier selection for these types of systems is critical as the necessary precise movement of the entire solenoid system depends on the accuracy of the current measurement.
Solenoid current sensors can be designed with external shunts or integrated shunt devices depending on the accuracy requirement. Each has their own advantages. Table 1 and Table 2 summarize the differences and benefits of these two architectures.
External shunt devices | Integrated shunt devices | |
---|---|---|
Suitability | Lower-current solenoids, because it is possible to interface with a higher-value external shunt resistor | Higher-current solenoids, as the integrated shunt is 2 mΩ. Choose based on your accuracy requirement. |
Differential configuration register placement | Integrated | Integrated |
Temperature drift | Shunt tolerances independent of device tolerance specifications, with considerable drift over the temperature range | Shunt tolerances included in device tolerance specifications, implying less drift over the temperature range |
Resistor quality |
|
|
Kelvin connection | External | Internal |
Common-mode voltage | -4 V to 80 V | -4 V to 80 V |
External shunt devices | Integrated shunt devices | |
---|---|---|
Benefits |
|
|
Enhanced PWM rejection system-level benefit |
|
|
Inclusion of flyback period in measurements. | Required wide common-mode range to accommodate the solenoid flyback period | Required wide common-mode range to accommodate the solenoid flyback period |
Inductance | Low, in order to reduce voltage swings during state transitions | Low, in order to reduce voltage swings during state transitions |
Price | Relatively lower price (excluding shunt price) | Moderately higher (including shunt price) |
Relevant TI reference design | Reference Design for Automotive, Proportional-Solenoid Current Sensor | Automotive Proportional Solenoid Drive with Highly Accurate Current Sensor Reference Design |
Figure 2 and Figure 3 shows the configurations of shunt for external and internal configurations. In Figure 2 shunt is external to the device (INA240-Q1) and in Figure 3 shunt is internal to the device (INA253-Q1).
The impedance of a solenoid comprises inductive and series resistive components. The series resistance of the coil (typically copper) has a high-temperature drift of 4,000 ppm/°C. This high drift value may correspond to a 40% accuracy reduction in solenoid motion control over a 100°C range.
Accuracy at lower current ranges is essential over the entire temperature range mainly because lower currents are noise prone and there is a more chance for the solenoid position inaccuracies. Smooth operation of hydraulic systems requires a minimum 2-mA resolution. Variations in this resolution cause solenoid position inaccuracies.
TI has two devices designed for solenoid current sensing applications:
These devices have increased the effectiveness of our powertrain, motor-control circuits and automotive battery systems.
Automotive solenoids need higher accuracies to compensate for wider temperature ranges and increased drift as the temperature increases. Our current-shunt monitors enable accurate readings across the entirety of automotive temperature ranges.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated