SSZT425 august 2019 TPS25830-Q1 , TPS25830A-Q1 , TPS25831-Q1
Jim Bird
Frustration caused by a dead mobile device battery is not limited to adults with phones. Children too young to read can transform from charming angels to noisy demons when their tablet battery dies.
This can be especially painful when it occurs during a long car ride. I have seen this happen, and recommend taking all reasonable steps to avoid it.
Before mobile devices, automotive cigarette lighters were populated with cigarette lighters, and sometimes radar detectors or CB radios. These sockets provide considerable power and are typically fused at 15 A or 20 A. Today they are commonly occupied by an adapter for charging mobile devices. Almost all of these adapters have one or more USB ports as an output.
More recently, automakers have been integrating USB charge ports into vehicles at the factory. These USB ports are either in the head unit (aka the radio), the console, or in a rear-seat charging hub. Initially, automakers installed only one or two ports and each port only had to supply 1.0-1.5 A. The DC/DC converter used to create 5 V for these ports had to deliver a modest 5-15 W, and a reasonably thoughtful thermal design could provide reliable operation.
Such is not the case today.
As mobile devices and USB evolved, charging current demands increased to 2 A, then 2.4 A, and now, with USB Type-C™, each port may require 3 A. This significant growth in USB power demand has driven many automakers to move USB charging power conversion and management out of the head unit and into hubs or consoles. This allows greater thermal, mechanical and electrical design flexibility than a location in the head unit.
A complete charge port design includes compliance with power, performance, safety and self-protection standards. Some of these standards require:
Historically, this required multichip solutions, but today it is possible to satisfy all of these functions with a single 5-mm-by-5mm 32-pin quad flat no-lead device that has 94% efficiency at a 12-V VIN. The TPS25830-Q1 and TPS25831-Q1 USB charge port converters are simple to use and integrate a DC/DC converter to minimize solution size and cost.
These devices enable maximum charging rates in divider mode and BC1.2 devices, along with USB Type-C handshaking. Cable compensation counteracts voltage droop across USB cables and provides 5 V at the USB connector over the full range of load current.
Smart thermal management on the TPS25831-Q1 prevents thermal shutdown due to overheating by progressively reducing load current as the system temperature approaches the overtemperature threshold.
If your automotive USB charge port design calls for high efficiency and small size – and low noise from back-seat occupants – check out the TPS25830-Q1 and TPS25831-Q1 and order an evaluation module today.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated