Dorian Brillet de Cande
Many battery-powered applications require a step-down buck converter to work in 100% duty-cycle, where VIN is close to VOUT, in order to extend battery run time when battery voltage is at its lowest value. For example, let’s say that there are two lithium manganese dioxide (Li-MnO2) batteries powering a smart meter. Li-MnO2 batteries are primary non-rechargeable cells used increasingly in smart gas or water meters because of their long operational lives (as much as 20 years) while being more cost-effective than lithium thionyl chloride batteries. Figure 1 shows the system configuration of two Li-MnO2 cells placed in series (2s1p) and then stepped down to power a microcontroller.
Ultra-low quiescent current (IQ) DC/DC converters can help you design applications with a battery lifetime up to 20 years. The load profile of a smart meter application is not a continuous load but a variable load profile. In order to enable long battery life, the system will draw a high current only occasionally (to send a wireless signal or actuate a valve), and then go back to a very low load condition. This type of load profile enables low average current consumption in the microampere range. High efficiency at such light loads requires ultra-low IQ, especially during the off-time where current consumption could be much lower than the average current consumption. TI’s TPS62840 ultra-low power buck converter has an operating IQ of only 60 nA and can regulate a 3.3-V power rail. The TPS62840’s very low IQ in 100% mode – 150 nA – further extends battery run time.
To better help you design and simulate your ultra-low power-supply circuit, WEBENCH® Power Designer is an online tool that enables the creation of customized power supply designs based on your specifications.
In our example, the average voltage per cell is around 3.0 V. The initial voltage of a cell is approximately 3.2 V when fresh, and the voltage can drop to less than 2 V when fully discharged. Assuming that each battery discharges down to 1.8 V and is 3.2 V when fresh, enter these parameters into WEBENCH Power Designer (Figure 2).
Using a 3.6-V minimum input voltage in the WEBENCH Power Designer search tool yields 51 possible devices, but the TPS62840 is not one of them. Why is that?
WEBENCH focuses on two initial parameters to help you find the best device for your system:
After selecting numerous devices, WEBENCH Power Designer performs detailed designs for each device. Below are three different outcomes which can be observed depending on the input parameters used:
The design update is failing because the minimum VIN is lower than VOUT. This design does not pass WEBENCH’s first check.
The design does not update because the duty cycle when calculated includes losses such as the high-side MOSFET RDSON and inductor DCR. Here, the duty-cycle value is greater than 99.9%. This design does not pass WEBENCH’s second check.
The final example displays the TPS62840 since the design passed both checks.
Either of these solutions enable WEBENCH Power Designer to design with the TPS62840. In an actual application, operating in 100% mode is normal and generally acceptable in order to fully discharge the battery. In 100% mode, the output voltage of a step-down converter decreases as the battery voltage decreases. This can still fit the system specifications of most loads. If 100% mode or the output voltage drop is not acceptable, low IQ buck-boost devices like the TPS63802 can help maintain a regulated output voltage.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated