Ryan Kraudel
This is the first in a three-part series on optical heart rate sensors for biometric wearables. This first installment focuses on how these sensor systems work and what you can measure with them.
Most wearables use photoplethysmography (PPG) to measure heart rate and other biometrics. PPG is the methodology of shining light into the skin and measuring the amount that scatters based on blood flow. That’s an oversimplification, but optical heart-rate sensors work based on the fact that light entering the body will scatter predictably as the blood-flow dynamics change, such as with changes in blood pulse rates (heart rate) or changes in blood volume (cardiac output). Figure 1 below depicts the primary components and basic working methodology of an optical heart rate sensor.
Optical heart-rate sensors use four primary technical components to measure heart rate:
Optical heart-rate sensors produce a PPG waveform that can measure heart rate as a foundational metric, but there’s much more that can be measured from a PPG waveform. Although it is very difficult to achieve and maintain accurate PPG measurements (more on that in the next section), when you do get it right, it can be very powerful. A high-quality PPG signal is foundational to a wealth of biometrics that the marketplace is demanding today. Figure 2 is a simplified PPG signal marking the measurement of several biometrics within that signal.
Here’s further detail on some of the measurements possible with optical heart rate sensors:
Designing an optical heart-rate sensor can be very challenging on a wearable device, because the methodology is sensitive to motion. To compensate, you need to have strong optomechanics and signal-extraction algorithms. Figure 3 shows some of the primary challenges you might face when designing with optical heart rate sensors.
Here’s further detail on the optomechanical considerations for PPG sensor integration:
Here’s further detail on the signal-extraction considerations for PPG sensor integration:
I hope this post provided some insight on how PPG sensor systems operate and what they can measure. In the next post in this series, I’ll explore best practices in integrating this technology into devices of all kinds – watches, fitness bands, earbuds and more.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated