SSZT771 march 2018 TPIC74100-Q1 , TPS55160-Q1 , TPS55162-Q1 , TPS55165-Q1
Automotive body electronics and gateway modules must operate without interruption, regardless of variations in the car battery. A car’s battery voltage can drop down to below 3V during cold crank and may surge as high as 40V during load dump, thus necessitating a DC/DC power supply to both step up and step down and maintain a regulated operating voltage from 5V to 12V.
In addition, DC/DC power supplies should have a small solution size in order to save space, operate with low quiescent current for minimal drainage of the car battery, and be capable of 2MHz switching to avoid electromagnetic interference (EMI) in the AM band. In this blog post, I will compare typical conventional DC/DC power-supply solutions and examine the advantages offered by integrated wide input voltage (VIN) buck-boost converters.
Figure 1 and Figure 2 offer straightforward and quick solutions by cascading two power stages, using one buck and one boost. You can save development time when both the buck and boost stages are existing designs. A main drawback is the low efficiency caused by the two conversion stages. For instance, even if each stage can achieve 90% efficiency, the overall efficiency is the product of the two, yielding 81%. Another drawback is the relatively higher bill-of-materials (BOM) cost and larger solution size – owing to the use of two power inductors, two controllers and more peripheral components, which may duplicate some functions of the two controllers.
Figure 3 shows a single-ended primary-inductor converter (SEPIC) converter, achieving the power conversion in a single stage. However, it still requires two inductors. Although you can use coupled inductors to replace two separate ones, the former undoubtedly costs more than the latter. The AC coupling capacitor that the SEPIC requires also adds to the BOM cost.
Figure 4 shows a buck-boost converter. It is a single-stage converter and only needs one power inductor. The non-synchronous rectifier reduces overall efficiency.
Using the synchronous rectifiers as shown in Figure 5 improves the efficiency, but four external MOSFETs raises the BOM cost. There are also challenges associated with difficulty in the printed circuit board (PCB) layout and the routing of power components for optimal performance.
Figure 8 shows the circuit’s performance under cold cranking. You can see that the output voltage is solidly regulated at 5V even during transient conditions.