If you're designing systems with complex processors, the chances are high that you'll have to consider power sequencing. Power sequencing is necessary in many systems during power up and/or power down phases, however,the timing requirements vary depending on processor selection and the subsystems being powered. For example, the image processor in a multifunction printer (MFP) has several rails that need to power up and power down in a specific order. This order ensure that the internal circuitry is properly biased and staggers the in-rush current at startup. In this post, I will review different ways to implement power sequencing and the benefits of using integrated load switches to do so.
Load switches are a great potion for power sequencing in your designs because they provide flexibility and increased protection in a smaller solution size. Design flexibility and simple control of subsystem power sequencing. Each rail can turn on and off independently without extensive processor intervention, and the rise and fall time of each rail is adjustable. This is possible because of features available in integrated load switches such as configurable rise time and quick output discharge (QOD). The TPS22918 is an example of an integrated load switch that has both of these features available. Figure 1 shows examples of common subsystems.
Additionally, using load switches instead of discrete metal-oxide semiconductor field-effect transistor (MOSFET) solutions also provides improved transient behavior and smaller solution size; you can read more about these benefits in the application report, “Integrated Load Switches Versus Discrete MOSFETs.”
And if you need more protection throughout your design, load switches can help here too. You can place an eFuse at the input of any hot-pluggable loads to help against hot-plug transients and protect downstream DC/DC converters from an input voltage that is too high or too low. Unlike a discrete fuse, eFuses do not need replacing after a fault, resulting in reduced system downtime and decreased maintenance costs.
We understand that power sequencing requirements are unique to each processor and system configuration; load switches are adaptable to numerous configuration options as seen below. Load switches control each power rail by adjusting the timing capacitance value on the CT pin and the resistance value on the QOD pin, without the need for external digital components such as oscillators, clocks or a processor. Figure 2 shows various configurations for implementing power sequencing in your system.
Figure 2 uses independent enables for each load switch to trigger power-up sequencing while varying the resistance on the QOD pin achieves power-down sequencing.
Figure 3 uses one GPIO signal to enable all three load switches, but varies the capacitance at the CT pin to control power-up sequencing. Again, varying the resistance on the QOD pin achieves power-down sequencing.
Figure 4 routes the QOD output of the previous load switch to the enable pin of the next load switch. Adding an external resistor-capacitor (RC) in parallel to the QOD output achieves power-up sequencing. Once more, varying the resistance on the QOD pin achieves power-down sequencing.
As we've discussed in this blog, power sequencing enables you to create a configuration that fits your needs while remaining simple, small and protected. You can learn more about implementing power sequencing in your designs from TI’s Power Sequencing Reference Design Using Load Switches. Since timing constraints vary greatly between different applications and processor-to-processor communications, this reference design is not limited to one specific timing sequence. Instead, the design enables you to configure multiple timing configurations to fit system specifications.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated