SSZT956 september 2017 TIOL111 , TIOL1115 , TIOS101 , TIOS1015
You’ve likely heard of the Internet of Things (IoT) and how it not only connects your internet-enabled devices to each other, but enables them to communicate and share data to improve your quality of life. Today, the manufacturing industry is using the IoT as a key piece of the next wave of manufacturing. Industry 4.0, which is a word some have coined to mean the next industrial revolution, describes factory automation and the ability to construct a “smart factory” where data is easily exchanged and harnessed to keep factories running at maximum efficiency. IO-Link is an important interface to implement this factory transition.
You may think that factories are already efficient based on the quality of products you buy today and the price at which you can purchase them. In reality, factories have numerous inefficiencies that an interface like IO-Link can help reduce. The IO-Link Consortium and International Electrotechnical Commission (IEC) 61131-9 standard established a bidirectional, manufacturer-independent communication protocol for sensors and actuators. The specification also defines a mechanical interface that is fully backward-compatible with existing field buses, such as Profibus, Profinet and EtherCAT, used today.
Let’s look at few key advantages of IO-Link and how they are helping drive factory automation:
These connectors, as shown in Figure 1, are based on the specifications outlined in IEC 61131-9. They are the same (M5, M8 and M12 type) connectors used throughout installations today.
Connections can occur across a three-wire (or more) cable stretching to a maximum of 20 meters (66 feet). Table 1 defines the IO-Link signals.
* Required for three-wire interface Table 1: IO-Link cable definitions
If you’re familiar with SIO, you’ll notice that its functions are the same as those listed in the table, with VCC, OUT and GND usually referenced. Both IO-Link and SIO use the C/Q (or OUT) signal for data.
TI has shipped IO-Link-enabled transceivers since 2011 and recently released its second generation of transceivers. In my next blog post, I’ll talk about how our TIOL111 IO-Link device transceiver and TIOS101 digital output switch further enable smart factories.