• Menu
  • Product
  • Email
  • PDF
  • Order now
  • Bringing New Intelligence to Industrial Applications with mmWave Sensors

    • SSZTA67 may   2017 IWR1443 , IWR1642 , IWR6843

       

  • CONTENTS
  • SEARCH
  • Bringing New Intelligence to Industrial Applications with mmWave Sensors
  1.   1
  2.   2
    1.     3
    2.     How mmWave Impacts Applications
    3.     Additional Resources
  3. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content
Technical Article

Bringing New Intelligence to Industrial Applications with mmWave Sensors

From position and proximity to level and light, sensing solutions provide a means to sense, digitize and process the world around us. Application-specific problems have given rise to a multitude of different sensing technologies that enable systems to sense conditions with different levels of accuracy and in diverse conditions. With the recent rise of smart infrastructures, Industry 4.0 in factory and building automation products, and newer applications such as autonomous drones, developers are now looking to sensors to help drive new levels of system performance and efficiency.

Millimeter-wave (mmWave) radar technology is uniquely equipped to detect short (5cm) to long (150m+) ranges, and can inherently detect the range, velocity and angle of fast-moving objects (up to 300kph) with high accuracy regardless of ambient lighting, fog, rain or dust. Figure 1 is an example visualization of range, velocity and angle information.

mmWave technology is extremely successful in the automotive industry, but designers are now tackling the challenge of expanding into other markets such as building and factory automation. The issue is that radar systems are traditionally discrete designs, resulting in complex hardware design and software development that create a barrier to entry.

GUID-55202DF8-8665-49E6-849C-2DD2AF5EA710-low.png Figure 1 Range, Velocity and Angle Information from TI mmWave Sensors in an Example Parking Lot Scene: the Graph with the Blue Background Is a Range/velocity Heatmap (Where You Can Identify the Moving/nonmoving Objects and Their Velocities); the Graph with the Green Background Is a Range/angle Visualization; and Colored Boxes Highlight Moving and Nonmoving Vehicles and Pedestrians in Both the Scene and These Graphs

Figure 2 shows an example discrete mmWave radar system. A radar processing chain requires multiple integrated circuit (IC) components, including a radio-frequency (RF) front end and a digital-processing back end. A discrete radar system requires special care and consideration for how to transmit high-speed radar data on a printed circuit board (PCB), and a central controller such as a microcontroller unit (MCU) must route control signals to all of the discrete components. These systems are especially sensitive to external electromagnetic interference (EMI), making them difficult to design for certain “noisy” systems and more challenging outdoor environments.

Discrete radar systems also introduce challenges for software designers. The configuration and control of a host MCU requires a connection to each of the RF and digital-processing components. Making sure that the system can control each component optimally for changing conditions and application needs requires a great deal of software design and development finesse.

GUID-177922CC-3241-4E0C-8DAC-E45D7294DECE-low.png Figure 2 Example Discrete mmWave Radar System; Each Colored Block Represents a Separate IC or Set of ICs within the RF Front End or Digital-processing Back End

TI’s single-chip IWR1x mmWave sensor portfolio integrates RF mmWave radar technology with powerful ARM® MCU and TI digital signal processing (DSP) as shown in Figure 3, and enables simple single-chip solutions that lower the barrier of entry to mmWave sensing. With TI’s single-chip 10mm-by-10mm IWR1x sensors, you no longer have to deal with complicated high-speed data and communication routes between discrete front-end, analog-to-digital converter and processing devices, nor the additional size, power and bill-of-materials costs associated with supporting them. This level of integration also simplifies the software design process, allowing for dramatically simpler device configuration, monitoring and calibration.

GUID-7C4BE4BA-DA84-43E2-A220-7C2CFA91B9AB-low.png Figure 3 TI’s IWR1x mmWave Sensors Integrate All Components Necessary for Single-chip mmWave Sensing to Simplify Hardware and Software Design.

How mmWave Impacts Applications

Fluid-level Sensing is a vital part of factories that store and measure different chemicals. Because the chemicals can be corrosive or toxic, the measurement of volume remaining must occur without direct contact. mmWave sensing offers high-accuracy measurement and strong robustness against environmental conditions, such as dust, fumes or extreme temperatures. The IWR1x RF front end is highly linear; its ultra-wide (4GHz continuous, 5GHz stitched) bandwidth enables extremely accurate sub-millimeter measurements of the fluid level in tanks from 1m to 80m. Design power optimization for 77GHz level transmitter reference design shows how to optimize the IWR1443 for operation in 4-20mA power-constrained systems.

Traffic Monitoring Infrastructure is tasked with improving transportation efficiency by understanding specific information and telemetry about vehicles and pedestrians in order to react to intersection conditions and collect traffic statistics. mmWave sensors enable measurement of both vehicle position and velocity and are capable of detecting objects at rates of speed up to 300kph and distances of 150m and farther. The Traffic Monitoring Object Detection and Tracking Reference Design shows how you can use the IWR1642 sensor not only for vehicle detection, but – by integrating object clustering and tracking algorithms on the on-board C674x DSP – to collect data on how vehicles are moving over time to enable controller systems that can react to dynamic traffic intelligently and in real-time.

Drones have taken off, from enthusiast racing to commercial use in a host of industries such as package delivery and forestry. Drone designer challenges include being able to detect obstacles and provide operator assistance during the most dangerous components of flight in order to safety and increase platform productivity. Drones require high-speed object detection and tracking from distances of 100m to those measured in centimeters, such as when a drone approaches the ground or operates around objects. To increase operating time and payload lift capability, solutions should be small in size and lightweight, since drones are battery-based.

The IWR1443BOOST and IWR1642BOOST evaluation modules are now available to easily evaluate mmWave radar technology and show how to use range, velocity and angle data for a variety of industrial sensing applications. Using the evaluation module with the TI-provided mmWave software development kit (SDK), you can run the out-of-box demo or begin customizing example code for your development within minutes. Also available is example source code that showcases more unusual uses of TI’s high-accuracy mmWave sensing and processing, such as the classification of water versus ground and non contact measurement of heart rate and breathing rate.

Additional Resources

  • Learn how mmWave sensor technology works.
  • Read more about mmWave sensors in the “Robust Traffic and Intersection Monitoring Using Millimeter Wave Radar” white paper.
  • See how mmWave sensors work in drone applications in the white paper, “Drone safety and productivity enabled by mmWave sensors.”
  • Download the “Fluid-Level Sensing using 77GHz millimeter wave” white paper.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 

Copyright © 2023, Texas Instruments Incorporated

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale