SSZTB93 may 2016 TPS53317A , TPS54620
As I travel and meet with customers across many market sectors, I have come to realize that many hardware designers become power-supply engineers by necessity. Hardware designers are responsible for designing voltage regulators that remain electrically and thermally stable under operating and expected worst-case conditions; meet the required power specifications of processors, application-specific integrated circuits (ASICs), double-data-rate (DDR) memory, hybrid cube memory and field-programmable gate arrays (FPGAs); and generate low electromagnetic interference (EMI). The job of a voltage regulator is to keep its output voltage constant (regulated) though line (input voltage), load (output current) and environmental variations.
Step-down (buck) voltage regulators are the most commonly used switching-regulator topology. Several voltage regulators are typically found in boards used in wired/wireless communication, enterprise server/storage, industrial and personal electronics. Today’s switching-voltage regulators have a plethora of control and protection features to ensure power-supply protection, reliability and output-voltage tolerance.
Let’s review some of their features.
Enable is an on/off input signal that can also be active high or low. Enable turns the voltage regulator on or off. If the voltage regulator has soft start, it will start in soft start, assuming that its input voltage is above the undervoltage lockout (UVL) threshold. If there’s a delay from the enable signal to soft start, the regulator will soft start after that time delay.
Power good and enable are often used for sequential power sequencing of multiple power supplies on the same board as shown in Fig.1
A voltage regulator with pre-biased capability will disable full synchronous rectification (holding the low side off) during initial soft start, start the first low-side FET on pulses with a narrow on-time, and then incrementally increase that on time cycle by cycle until it coincides with the time dictated by (1-D), where D is the buck regulator duty cycle. Essentially, pulse-width modulation (PWM) pulses start when the error-amplifier soft-start input voltage rises above the programmed feedback voltage value (Figure 4). This ensures that the output capacitors do not discharge during soft start. Pre-bias relies on the input voltage being always higher than the output voltage. The output-inductor current sources current to charge the output capacitors only until the output voltage reaches the regulation value.
Figure 5 shows startup waveforms of a 1.2V VOUT voltage under different pre-bias scenarios. The first trace is when the output voltage starts with zero pre-bias. The pre-bias levels of the second and third traces are 0.5V and 1.0V, respectively. When a pre-biased voltage is present at the output, the regulator will begin soft start from that voltage level onwards. TI buck regulators like the TPS53317A have pre-biased startup capability.
Understanding voltage-regulator features can demystify the idea that power supplies are an opaque black box. In future posts, I will look at other voltage-regulator features and how they relate to power-supply design and performance.