Alberto Doronzo
With the introduction of new wide-bandgap materials such as gallium nitride (GaN) in transistor fabrication, significant figure-of-merit improvements translate into potential improvements in power supplies.
In this two-part series, I’ll discuss how these new wide-bandgap materials can benefit new designs.
Using newer materials that exhibit a higher bandgap than silicon-based semiconductors enables a reduction in die size while maintaining the same blocking voltage.
A smaller die results in lower parasitic capacitances and the lowering of both transistor gate charge (Qg) and output capacitance (Coss). This translates directly into faster transition speeds with less transition losses, less Coss dissipation and less driving Qg losses at a given frequency compared to classic silicon MOSFETs.
Whereas designers don’t drive silicon FETs in power applications above a few hundred kilohertz because the switching losses become prohibitively large, the lower parasitics enable GaN-based FETs to operate at frequencies up to 10 times higher while maintaining comparable switching and driving losses.
This ability to operate at higher frequencies lowers ripple voltage and current, which equates to lower conduction and magnetic-core losses, and a potential reduction in the size of inductive and capacitive components.
With higher frequencies, the need to store energy in-between charging cycles is linearly reduced. Therefore, all passive components used for energy storage or filtering can be smaller.
Size-reduction benefits are especially evident in applications where size, weight and form factor are critical. For instance, in any application that is not stationary (such as for airborne or mobile systems), size and weight are major concerns, as more fuel is needed as weight increases.
A second advantage of shifting to higher frequencies is the reduction of the electromagnetic interference (EMI) filter: passive filters become more efficient at higher frequencies, and above 5MHz the switching noise generated imposed by standards (EN55022) relaxes by an extra 5dB. Higher frequencies are more likely to find a radiation path, however; Faraday shielding (available only on grounded systems) and careful layout become increasingly important.
As frequency increases, voltage and current ripple decrease, thus reducing the required capacitance.
Large aluminum capacitors, which are very effective up to the lower hundreds of kilohertz, become ineffective once switching frequencies push into the megahertz realm. You can replace aluminum capacitors with compact ceramic capacitors, which exhibit lower impedances due to both the structure and connection method to the board.
Using ceramic capacitors requires that you pay attention to their self-resonance (most standard ceramic capacitors are good up to a few megahertz) and DC voltage bias. To counter these effects, select and carefully lay out lower-impedance form factors, and select high-grade dielectric material (NP0/C0G or X7R).
Similarly, you can reduce the size of inductors and transformers when increasing frequency, but the selection of magnetic materials that can maintain good performance at multiple megahertz with high changes in magnetic flux (dΦ/dt) (due to fast changing currents) is limited.
Above 5MHz, it is possible to get rid of the solid core and adopt air-core inductors. Air-core inductors remove core losses, but the lower permittivity of air forces a larger number of turns for a given inductance value. This results in higher copper losses and a construction that might be larger in volume than a solid-core solution, with strong fields radiating out further into space. Researchers are experimenting with higher-frequency magnetic materials that might be a good solution for multi-megahertz applications.
So what are the consequences of shrinking a power supply? I’ll explore this question in the next installment of this series.
Get to know TI GaN solutions and begin your design.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated