SSZTCQ7 May 2015 LDC1312 , LDC1314 , LDC1612 , LDC1614
In my previous post, I explained the benefits and configuration of a multichannel inductive-sensing system with the latest expansion to TI’s inductance-to-digital converter (LDC) portfolio. In this post, I’ll explain how to calculate the timing characteristics of single- and multichannel LDC systems.
Similar to the LDC1000, the new multichannel LDCs have a data-ready signal (DRDY) that can detect when a new data sample is available. Additionally, the timing of the multichannel LDCs is fully deterministic; therefore, it is possible to calculate when a data sample is ready without having to poll the DRDY signal or use the interrupt pin.
The scope plots in Figure 1 and Figure 2 show single-ended measurements of the sensor-input pin in single- and multichannel mode, respectively. In this example, the LDC has been configured with a relatively short conversion time of 128 FREF cycles (CHn_RCOUNT = 0x08), which allows high sample rates at the cost of lower measurement precision.
Timing of the LDCs is deterministic and can be broken down into:
In summary, in a multichannel system, the dwell-time interval for a single sample is the sum of three parts:
As shown in Figure 2, one conversion takes 1.8ms (sensor-activation time) + 3.2ms (conversion time) + 0.75ms (channel-switch delay) = 16.75ms per channel. If the LDC is configured for dual-channel operation by setting AUTOSCAN_EN = 1 and RR_SEQUENCE = 00, then one full set of conversion results will be available from the data registers every 33.5ms. If the device is configured in quad-channel mode instead (by setting AUTOSCAN_EN = 1 and RR_SEQUENCE = 10), then one full set of conversion results would take 67ms to complete.
To determine the timing in different configurations, see the Inductive Sensing Design Calculator Tool.
If you are using the LDC1312, LDC1314, LDC1612 or LDC1614 in your designs, be sure to check out the next installment in this series, when I’ll talk about the extended-range benefits and superior measurement performance of the LDC1612 and LDC1614.