SWRA679 January   2021 CC3200 , CC3220R , CC3220S , CC3220SF , CC3230S , CC3230SF , CC3235S , CC3235SF

 

  1.   Trademarks
  2. 1Introduction
    1. 1.1 Basics of the SAR ADC Architecture
    2. 1.2 Introduction to the CC32XX ADC
      1. 1.2.1 Main Features
      2. 1.2.2 ADC Sampling Operation
      3. 1.2.3 ADC Additional Information
  3. 2ADC Application Examples
    1. 2.1 Battery Voltage Measurements
      1. 2.1.1 Important Considerations
        1. 2.1.1.1 Extra Current Draw
        2. 2.1.1.2 Droop Correction
        3. 2.1.1.3 Offset Adjustment
        4. 2.1.1.4 Least Squares Fit
        5. 2.1.1.5 Choosing the Capacitor (for droop correction)
        6. 2.1.1.6 First Measurement
        7. 2.1.1.7 Time Between Measurements
  4. 3AC Measurements
  5. 4Useful References
    1. 4.1 Smart Thermostat
    2. 4.2 Measuring Air Quality With the Winsen MP503 Analog Sensor
    3. 4.3 Touch Position Detection With HMI Through Resistive Touchscreen
  6. 5References

First Measurement

The first measurement of the ADC for the battery voltage needs to take into account the charging time of the capacitor. Assuming that the input is a step with a fast rise time (usually few ms which can be ignored), the time taken for the capacitor can be estimated from the simple capacitor charging equation. In this specific case, the charging time to reach 1% accuracy is about 45 ms. This has to be taken into account during the measurements. The wake-up from power on RESET for the CC32xx device is at least 1.1sec. So that gives more than enough time for the voltage at the capacitor to settle to its final value.