SWRA730 February   2022 CC1311P3 , CC1311R3 , CC1312R , CC1312R7 , CC1314R10 , CC1352P , CC1352P7 , CC1352R , CC1354P10 , CC1354R10

 

  1.   Trademarks
  2.   Acronyms
  3. 1Description of the PCB Antenna
    1. 1.1 Implementation of the PCB Meander Monopole Antenna
    2. 1.2 Matching Network
  4. 2Test Setup
    1. 2.1 Radiation Pattern
  5. 3Unmatched Results
    1. 3.1 Smith Chart – Natural Impedance without Antenna Match Components
    2. 3.2 Smith Chart – Impedance with external component Z64
      1. 3.2.1 433 MHz Unmatched
      2. 3.2.2 470 MHz Unmatched
      3. 3.2.3 490 MHz Unmatched
      4. 3.2.4 510 MHz Unmatched
      5. 3.2.5 868/915 MHz Unmatched
  6. 4Single-Band Matching and Result
    1. 4.1 433-MHz Smith chart, SWR, Bandwidth, and Efficiency
    2. 4.2 470-MHz Smith chart, SWR, Bandwidth, and Efficiency
    3. 4.3 490-MHz Smith Chart, SWR, Bandwidth, and Efficiency
    4. 4.4 510-MHz Smith Chart, SWR, Bandwidth, and Efficiency
    5. 4.5 868/915-MHz Smith Chart, SWR, Bandwidth, and Efficiency
  7. 5Dual Band Matching and Results
    1. 5.1 433-MHz and 2440-MHz Smith Chart, SWR, Bandwidth, and Efficiency
    2. 5.2 470-MHz and 2440-MHz Smith Chart, SWR, Bandwidth and Efficiency
    3. 5.3 490 MHz and 2440 MHz Smith Chart, SWR, Bandwidth and Efficiency
    4. 5.4 510-MHz and 2440-MHz Smith Chart, SWR, Bandwidth, and Efficiency
    5. 5.5 868/915 and 2440-MHz Smith Chart, SWR, Bandwidth, and Efficiency
  8. 6Summary - Bill of Materials and Results
  9. 7Conclusion
  10. 8References

Description of the PCB Antenna

The antenna described in this document is a PCB meander monopole that users can configure by changing the BOM to operate as a single-band antenna or dual-band antenna. The resonance is set by the antenna PCB trace element and the antenna matching components. This allows the antenna to cover a wideband range with one antenna pattern design. The impedance of this antenna depends on the mode used. Referring to Figure 1-1, if the length of L4 is kept as shown, this is beneficial for operation around 433–510 MHz. If L4 is shortened to half the length (19.0 mm), this is beneficial when operating at 868–930 MHz.

The antenna layout is positioned on the top and bottom layer of the board as can be seen in Figure 1-1; this enables a lower resistive loss and gives a slightly wider bandwidth compared to a single-sided layout solution. With a single-sided layout; the area underneath the antenna can not be used for any other routing so it is more useful to utilize this area to optimize the antenna’s performance.