SWRA794A June   2024  – September 2024 AWRL1432 , AWRL6432 , IWRL1432 , IWRL6432 , IWRL6432AOP

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. Acronyms Used in This Document
  5. Introduction
  6. Purpose of Calibrations
  7. Typical Stages of Calibration
    1. 4.1 Factory Calibrations
    2. 4.2 APLL Calibration
    3. 4.3 Runtime Calibrations
  8. List and Description of Calibrations
    1. 5.1 APLL Hardware Calibration
    2. 5.2 Synthesizer VCO Calibration
    3. 5.3 LO Distribution Calibration
    4. 5.4 Power Detector Calibration
    5. 5.5 TX Power Calibration
    6. 5.6 RX Gain Calibration
  9. Software configurability of Calibrations
    1. 6.1 Software Sequence for Factory Calibrations
      1. 6.1.1 mmWaveLink Initialization
      2. 6.1.2 FECSS Power-On
      3. 6.1.3 APLL Power-On and Hardware Calibration
      4. 6.1.4 RF Channel Configuration
      5. 6.1.5 Trigger Factory Calibrations
      6. 6.1.6 Factory Calibration Data Store
      7. 6.1.7 APLL Power-Off
      8. 6.1.8 FECSS Power-Off
      9. 6.1.9 mmWaveLink De-Initialization
    2. 6.2 Software Sequence for Runtime (In-Field) Operation
      1. 6.2.1 Initialization
        1. 6.2.1.1 mmWaveLink Initialization
        2. 6.2.1.2 FECSS Power-On
        3. 6.2.1.3 APLL Power-On and Hardware Calibration
        4. 6.2.1.4 Factory Calibration Data Restore
        5. 6.2.1.5 Temperature Sensor Configuration
      2. 6.2.2 Profile Configuration
        1. 6.2.2.1 Profile Common Configuration
        2. 6.2.2.2 Profile Time Configuration
        3. 6.2.2.3 Frame Configuration
      3. 6.2.3 Runtime Calibration
        1. 6.2.3.1 Temperature Sensor Trigger
        2. 6.2.3.2 Runtime Calibration Configure and Trigger
        3. 6.2.3.3 Tx CLPC Calibration
      4. 6.2.4 Frame Trigger
        1. 6.2.4.1 Sensor Start
        2. 6.2.4.2 Sensor Status
        3. 6.2.4.3 Sensor Stop
      5. 6.2.5 Deep Sleep Entry and Exit
      6. 6.2.6 De-Initialization
  10. Recommended Calibration Sequence: OLPC vs CLPC
    1. 7.1 Safety Application With OLPC Tx Power Cal
    2. 7.2 Non-Safety Application With OLPC Tx Power Cal
    3. 7.3 Application With CLPC Tx Power Cal
  11. Summary
  12. References
  13. 10Revision History

Factory Calibrations

Factory calibrations are performed to compensate for manufacturing process variation effects. Factory calibrations are recommended to be performed in a controlled environment(an RF interference-free environment) at user's factory. These are typically performed between junction temperatures of 10°C to 50°C (preferably at 25°C). Once the factory calibrations are performed the Rx gain codes and Tx PA codes are derived for three temperature bins (Table 4-2). The user application can store the calibration results in non-volatile memory and restore at cold boot. If the end user system does not have capability to store factory calibration results, then the calibrations need to be run at every cold boot. Figure 6-1 in Section 6.1 talks about various stages and steps for factory calibrations to be performed by user application.

Note: In xWRL1432 and xWRL6432, RX IFA calibration is not needed as the IFA stage calibration is already done in TI’s Factory and the calibration data is effused.