• Menu
  • Product
  • Email
  • PDF
  • Order now
  • AWR1243 Single-Chip 77- and 79-GHz FMCW Transceiver

    • SWRS188D May   2017  – December 2021 AWR1243

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • AWR1243 Single-Chip 77- and 79-GHz FMCW Transceiver
  1. 1 Features
  2. 2 Applications
  3. 3 Description
  4. 4 Functional Block Diagram
  5. 5 Revision History
  6. 6 Device Comparison
    1. 6.1 Related Products
  7. 7 Terminal Configuration and Functions
    1. 7.1 Pin Diagram
    2. 7.2 Signal Descriptions
      1. 7.2.1 Signal Descriptions
  8. 8 Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Power-On Hours (POH)
    4. 8.4 Recommended Operating Conditions
    5. 8.5 Power Supply Specifications
    6. 8.6 Power Consumption Summary
    7. 8.7 RF Specification
    8. 8.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161]
    9. 8.9 Timing and Switching Characteristics
      1. 8.9.1 Power Supply Sequencing and Reset Timing
      2. 8.9.2 Synchronized Frame Triggering
      3. 8.9.3 Input Clocks and Oscillators
        1. 8.9.3.1 Clock Specifications
      4. 8.9.4 Multibuffered / Standard Serial Peripheral Interface (MibSPI)
        1. 8.9.4.1 Peripheral Description
          1. 8.9.4.1.1 SPI Timing Conditions
          2. 8.9.4.1.2 SPI Peripheral Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)
          3. 8.9.4.1.3 SPI Peripheral Mode Timing Requirements (SPICLK = input, SPISIMO = input, and SPISOMI = output)
        2. 8.9.4.2 Typical Interface Protocol Diagram (Peripheral Mode)
      5. 8.9.5 LVDS Interface Configuration
        1. 8.9.5.1 LVDS Interface Timings
      6. 8.9.6 General-Purpose Input/Output
        1. 8.9.6.1 Switching Characteristics for Output Timing versus Load Capacitance (CL)
      7. 8.9.7 Camera Serial Interface (CSI)
        1. 8.9.7.1 CSI Switching Characteristics
  9. 9 Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Subsystems
      1. 9.3.1 RF and Analog Subsystem
        1. 9.3.1.1 Clock Subsystem
        2. 9.3.1.2 Transmit Subsystem
        3. 9.3.1.3 Receive Subsystem
      2. 9.3.2 Host Interface
    4. 9.4 Other Subsystems
      1. 9.4.1 ADC Data Format Over CSI2 Interface
  10. 10Monitoring and Diagnostics
    1. 10.1 Monitoring and Diagnostic Mechanisms
  11. 11Applications, Implementation, and Layout
    1. 11.1 Application Information
    2. 11.2 Short-, Medium-, and Long-Range Radar
    3. 11.3 Reference Schematic
  12. 12Device and Documentation Support
    1. 12.1 Device Nomenclature
    2. 12.2 Tools and Software
    3. 12.3 Documentation Support
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Packaging Information
    2. 13.2 Tray Information for
  14. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

AWR1243 Single-Chip 77- and 79-GHz FMCW Transceiver

1 Features

  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and ADC
    • 76- to 81-GHz coverage with 4 GHz available bandwidth
    • Four receive channels
    • Three transmit channels (two can be used simultaneously)
    • Ultra-accurate chirp engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 14 dB (76 to 77 GHz)
      • 15 dB (77 to 81 GHz)
    • Phase noise at 1 MHz:
      • –95 dBc/Hz (76 to 77 GHz)
      • –93 dBc/Hz (77 to 81 GHz)
  • Built-in calibration and self-test
    • Built-in firmware (ROM)
    • Self-calibrating system across process and temperature
  • Host interface
    • Control interface with external processor over SPI
    • Data interface with external processor over MIPI D-PHY and CSI2 V1.1
    • Interrupts for fault reporting
  • Functional Safety-Compliant
    • Developed for functional safety applications
    • Documentation available to aid ISO 26262 functional safety system design up to ASIL-D
    • Hardware integrity up to ASIL-B
    • Safety-related certification
      • ISO 26262 certified upto ASIL B by TUV SUD
  • AEC-Q100 qualified
  • Device advanced features
    • Embedded self-monitoring with no host processor involvement
    • Complex baseband architecture
    • Embedded interference detection capability
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • Supports externally driven clock (square/sine) at 40 MHz
    • Supports 40 MHz crystal connection with load capacitors
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Operating Conditions
    • Junction temp range: –40°C to 125°C

2 Applications

  • Automotive Sensor for measuring range, velocity and angle
  • Automated highway driving
  • Automatic emergency braking
  • Adaptive cruise control
GUID-20210127-CA0I-6WPF-FPSV-HRHLQWMZQG2H-low.gif Figure 2-1 Autonomous Radar Sensor For Automotive Applications

3 Description

The AWR1243 device is an integrated single-chip FMCW transceiver capable of operation in the 76- to 81-GHz band. The device enables unprecedented levels of integration in an extremely small form factor. AWR1243 is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space.

The AWR1243 device is a self-contained FMCW transceiver single-chip solution that simplifies the implementation of Automotive Radar sensors in the band of 76 to 81 GHz. It is built on TI’s low-power 45-nm RFCMOS process, which enables a monolithic implementation of a 3TX, 4RX system with built-in PLL and ADC converters. Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid, Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including TI reference designs, software drivers, sample configurations, API guides, and user documentation.

Device Information
PART NUMBER(2) PACKAGE(1) BODY SIZE TRAY / TAPE AND REEL
AWR1243FBIGABLQ1 FCBGA (161) 10.4 mm × 10.4 mm Tray
AWR1243FBIGABLRQ1 Tape and Reel
(1) For more information, see Section 13, Mechanical, Packaging, and Orderable Information.
(2) For more information, see Section 12.1, Device Nomenclature.

4 Functional Block Diagram

Figure 4-1 shows the functional block diagram of the device.

GUID-0BE6F117-AB4A-40B8-BA50-C98ACC01E2C7-low.gif
Phase Shift Control:
  • 0° / 180° BPM for AWR1243
Internal temperature sensor accuracy is ± 7 °C.
Figure 4-1 Functional Block Diagram

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale