SWRS304A October   2024  – December 2024 CC2745P10-Q1 , CC2745R10-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Functional Block Diagram
  6. Device Comparison
  7. Pin Configuration and Functions
    1. 6.1 Pin Diagram—RHA package
    2. 6.2 Signal Descriptions—RHA Package
    3. 6.3 Connections for Unused Pins and Modules—RHA Package
    4. 6.4 RHA Peripheral Pin Mapping
    5. 6.5 RHA Peripheral Signal Descriptions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD and MSL Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  DC/DC
    5. 7.5  GLDO
    6. 7.6  Power Supply and Modules
    7. 7.7  Battery Monitor
    8. 7.8  BATMON Temperature Sensor
    9. 7.9  Power Consumption—Power Modes
    10. 7.10 Power Consumption—Radio Modes
    11. 7.11 Nonvolatile (Flash) Memory Characteristics
    12. 7.12 Thermal Resistance Characteristics
    13. 7.13 RF Frequency Bands
    14. 7.14 Bluetooth Low Energy—Receive (RX)
    15. 7.15 Bluetooth Low Energy—Transmit (TX)
    16. 7.16 Bluetooth Channel Sounding
    17. 7.17 2.4GHz RX/TX CW
    18. 7.18 Timing and Switching Characteristics
      1. 7.18.1 Reset Timing
      2. 7.18.2 Wakeup Timing
      3. 7.18.3 Clock Specifications
        1. 7.18.3.1 48 MHz Crystal Oscillator (HFXT)
        2. 7.18.3.2 96 MHz RC Oscillator (HFOSC)
        3. 7.18.3.3 80/90/98 MHz RC Oscillator (AFOSC)
        4. 7.18.3.4 32 kHz Crystal Oscillator (LFXT)
        5. 7.18.3.5 32 kHz RC Oscillator (LFOSC)
    19. 7.19 Peripheral Characteristics
      1. 7.19.1 UART
        1. 7.19.1.1 UART Characteristics
      2. 7.19.2 SPI
        1. 7.19.2.1 SPI Characteristics
        2. 7.19.2.2 SPI Controller Mode
        3. 7.19.2.3 SPI Timing Diagrams - Controller Mode
        4. 7.19.2.4 SPI Peripheral Mode
        5. 7.19.2.5 SPI Timing Diagrams - Peripheral Mode
      3. 7.19.3 I2C
        1. 7.19.3.1 I2C Characteristics
        2. 7.19.3.2 I2C Timing Diagram
      4. 7.19.4 I2S
        1. 7.19.4.1 I2S Controller Mode
        2. 7.19.4.2 I2S Peripheral Mode
      5. 7.19.5 CAN-FD
        1. 7.19.5.1 CAN-FD Characteristics
      6. 7.19.6 GPIO
        1. 7.19.6.1 GPIO DC Characteristics
      7. 7.19.7 ADC
        1. 7.19.7.1 Analog-to-Digital Converter (ADC) Characteristics
      8. 7.19.8 Comparators
        1. 7.19.8.1 Low Power Comparator
      9. 7.19.9 Voltage Glitch Monitor
    20. 7.20 Typical Characteristics
      1. 7.20.1 MCU Current
      2. 7.20.2 RX Current
      3. 7.20.3 TX Current
      4. 7.20.4 RX Performance
      5. 7.20.5 TX Performance
      6. 7.20.6 ADC Performance
  9. Detailed Description
    1. 8.1  Overview
    2. 8.2  System CPU
    3. 8.3  Radio (RF Core)
      1. 8.3.1 Bluetooth Low Energy
    4. 8.4  Memory
    5. 8.5  Hardware Security Module (HSM)
    6. 8.6  Cryptography
    7. 8.7  Timers
    8. 8.8  Algorithm Processing Unit (APU)
    9. 8.9  Serial Peripherals and I/O
    10. 8.10 Battery and Temperature Monitor
    11. 8.11 Voltage Glitch Monitor (VGM)
    12. 8.12 µDMA
    13. 8.13 Debug
    14. 8.14 Power Management
    15. 8.15 Clock Systems
    16. 8.16 Network Processor
    17. 8.17 Integrated BALUN, High Power PA (Power Amplifier)
  10. Application, Implementation, and Layout
    1. 9.1 Reference Designs
    2. 9.2 Junction Temperature Calculation
  11. 10Device and Documentation Support
    1. 10.1 Device Nomenclature
    2. 10.2 Tools and Software
      1. 10.2.1 SimpleLink™ Microcontroller Platform
      2. 10.2.2 Software License and Notice
    3. 10.3 Documentation Support
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Radio (RF Core)

The low-power RF Core (LRF) implements a high-performance and highly flexible RF subsystem containing RF and baseband circuitry in addition to a software-defined digital radio (LRFD). LRFD provides a high-level, command-based API to the main CPU and handles all of the timing critical and low-level details of many different radio PHYs. Several signals are also available to control external circuitry such as RF switches or range extenders autonomously.

The modem is highly configurable and has the flexibility to support future standards. It is not programmable by customers but is instead loaded with precompiled images provided in the radio driver in the SimpleLink™ Low Power F3 software development kit (SDK). This mechanism allows the radio platform to be updated for support of future versions of standards with over-the-air (OTA) updates while still using the same silicon. LRFD stores the code images in the RF SRAM and does not make use of any ROM memory, thus image loading from flash only occurs once after boot, and no patching is required when exiting power modes.