SWRU423A July   2015  – May 2016 WL1801MOD , WL1805MOD , WL1807MOD , WL1831MOD , WL1835MOD , WL1837MOD

 

  1.   WiLink 8 WLAN Features Guide
    1.     Trademarks
    2. 1 Introducion
      1. 1.1 Scope
      2. 1.2 Acronyms Table
      3. 1.3 WiLink 8 Specification
    3. 2 General Features
      1. 2.1  Supported Rates
        1. 2.1.1 11b Rates
        2. 2.1.2 11a/g Rates
      2. 2.2  High-Throughput (HT) Features
        1. 2.2.1 11n Rates
        2. 2.2.2 MIMO at 2.4 GHz
        3. 2.2.3 40-MHz BW Operation
        4. 2.2.4 A-MPDU and A-MSDU
        5. 2.2.5 RIFS
        6. 2.2.6 BA Sessions
        7. 2.2.7 Greenfield
      3. 2.3  Quality of Service (QoS)
      4. 2.4  Protection Types
        1. 2.4.1 General
        2. 2.4.2 Protection Methods
      5. 2.5  Suspend and Resume
      6. 2.6  WoW (Wake on WLAN)
      7. 2.7  Set TX Power
      8. 2.8  5-GHz Antenna Diversity
      9. 2.9  Wi-Fi – Bluetooth/Bluetooth Smart Coexistence
      10. 2.10 Wi-Fi – ZigBee Coexistence
      11. 2.11 Accurate Synchronization Over Wi-Fi
    4. 3 Single Role: Station
      1. 3.1  Scanning
        1. 3.1.1 One-Shot Scan
        2. 3.1.2 Connection Scan
        3. 3.1.3 Background Scan
      2. 3.2  Connection
        1. 3.2.1 Manual (Via Commands)
          1. 3.2.1.1 Connection Time
          2. 3.2.1.2 Connection Success Rate
          3. 3.2.1.3 Connect to Best BSSID of the Configured SSID
        2. 3.2.2 Automatic (Via Profiles)
        3. 3.2.3 Wi-Fi Protected Setup (WPS)
          1. 3.2.3.1 WPS PBC
          2. 3.2.3.2 WPS PIN
      3. 3.3  Disconnection
      4. 3.4  DHCP Client
      5. 3.5  Security
        1. 3.5.1 Authentication Types
        2. 3.5.2 Encryption Types
        3. 3.5.3 Broadcast Key Rotation (BKR)
      6. 3.6  Filtering
        1. 3.6.1 Beacon Filtering
        2. 3.6.2 Multicast Filtering
      7. 3.7  Auto ARP
      8. 3.8  Preferred Networks (Profiles)
        1. 3.8.1 Hidden Network
      9. 3.9  Power-Save Mode
        1. 3.9.1 Active
        2. 3.9.2 Auto Power-Save Mode
        3. 3.9.3 Forced Power-Save Mode
      10. 3.10 Power-Save Delivery Protocols
        1. 3.10.1 Legacy
        2. 3.10.2 U-APSD
      11. 3.11 Keep-Alive Mechanism
      12. 3.12 Smart Config
      13. 3.13 Regulatory Domain
      14. 3.14 DFS Slave (Channel Switch)
      15. 3.15 Roaming
        1. 3.15.1 Roaming Mechanism
          1. 3.15.1.1 Mechanism Enabling
          2. 3.15.1.2 Roaming Candidates List
          3. 3.15.1.3 A Decision to Roam
          4. 3.15.1.4 Connection to a Better AP
        2. 3.15.2 Roaming Triggers
          1. 3.15.2.1 RSSI Level Delta
          2. 3.15.2.2 APs Disappearing
    5. 4 Single Role: AP
      1. 4.1  Connection
      2. 4.2  Hidden SSID
      3. 4.3  Security
      4. 4.4  Regulatory Domain
      5. 4.5  AP Scan
      6. 4.6  Automatic Channel Selection (ACS)
        1. 4.6.1 40-MHz Operation
        2. 4.6.2 ACS Whitelist and Blacklist Channels
      7. 4.7  Maximum Connected Stations
      8. 4.8  Aging
      9. 4.9  DFS Master
        1. 4.9.1 DFS Standards
        2. 4.9.2 DFS Mechanism
        3. 4.9.3 WiLink8.0 DFS Master Capabilities
      10. 4.10 Access Control
        1. 4.10.1 Blacklist
        2. 4.10.2 Whitelist
      11. 4.11 Extreme Low Power (ELP)
    6. 5 Single Role: P2P
      1. 5.1 P2P Device
        1. 5.1.1 Searching Phase
        2. 5.1.2 Negotiation
        3. 5.1.3 Group Formation
      2. 5.2 PSP Client
      3. 5.3 P2P GO
    7. 6 Single Role: Mesh
      1. 6.1 Supported Modes
        1. 6.1.1 Mesh Point
        2. 6.1.2 Mesh Portal/Gate
        3. 6.1.3 Mesh Access Point
      2. 6.2 Hardware and Software Requirements
        1. 6.2.1 Hardware requirements
        2. 6.2.2 Software Requirements
      3. 6.3 Capabilities
    8. 7 Multi-Role
      1. 7.1 General Overview
      2. 7.2 Limitations
    9. 8 Performance
      1. 8.1 Single-Role
      2. 8.2 Multi-Role
      3. 8.3 AP and mBSSID (Dual AP) Fairness
        1. 8.3.1 AP Fairness: 1-to-10 Stations Throughput Distribution
        2. 8.3.2 mBSSID Fairness: 10 Stations Throughput Distribution
      4. 8.4 Bluetooth WLAN Coexistence
        1. 8.4.1 WLAN Single Role – Bluetooth Performance
  2.   Revision History

P2P GO

The device that became group owner (GO) during the negotiation phase preceding the connection is a coordinator of the group. It has the special capabilities of P2P and the standard capabilities of an AP. It permits connection of additional P2P devices, as well as the connection of legacy Wi-Fi stations, such as laptops, smartphones, and so forth; if they know the pre-shared security key for connection. Connecting additional P2P devices to the GO is possible by joining the group, not by negotiation, as this device already behaves as the GO and does not change its role during this connection.

Because the GO behaves like an AP and must transmit beacons periodically, it is mostly in the active state, which requires a higher current consumption. However, unlike the limitation of the AP in entering power save mode, the GO can invoke the power-save mode once or periodically, which leads to power saving. Usually, devices that use a battery for operation tend to become a client during P2P connection, for battery-saving considerations.

The lifetime of the GO, and P2P in general, is until one of the peers terminates the connection. When a peer initiates a disconnect, the second peer also stops operation of the P2P device.