SWRU548C February   2019  – September 2021 CC3235MODAS , CC3235MODASF , CC3235MODS , CC3235MODSF

 

  1. 1Introduction
    1. 1.1 CC3235MODSF LaunchPad™
    2. 1.2 LAUNCHCC3235MOD Key Features
    3. 1.3 What's Included
      1. 1.3.1 Kit Contents
      2. 1.3.2 Software Examples
    4. 1.4 REACH Compliance
    5. 1.5 Regulatory Compliance
    6. 1.6 First Steps: Out-of-Box Experience
      1. 1.6.1 Connecting to the Computer
      2. 1.6.2 Running the Out-of-Box Experience
    7. 1.7 Next Steps: Looking into the Provided Code
    8. 1.8 Trademarks
  2. 2Hardware
    1. 2.1 Block Diagram
    2. 2.2 Hardware Features
      1. 2.2.1  Key Benefits
      2. 2.2.2  XDS110-Based Onboard Debug Probe
      3. 2.2.3  Debug Probe Connection: Isolation Jumper Block
      4. 2.2.4  Application (or "Backchannel") UART
      5. 2.2.5  JTAG Headers
      6. 2.2.6  Using the XDS110 Debug Probe with a Different Target
      7. 2.2.7  Power Connections
        1. 2.2.7.1 XDS110 USB Power
        2. 2.2.7.2 BoosterPack Plug-in Module and External Power Supply
      8. 2.2.8  Reset Pullup Jumper
      9. 2.2.9  Clocking
      10. 2.2.10 I2C Connection
        1. 2.2.10.1 Default I2C Addresses
      11. 2.2.11 Sense on Power (SOP)
      12. 2.2.12 Push-Buttons and LED Indicators
    3. 2.3 Electrical Characteristics
    4. 2.4 Antenna Characteristics
    5. 2.5 BoosterPack Plug-in Module Pinout
  3. 3Layout Guidelines
    1. 3.1 LAUNCHCC3235MOD Board Layout
    2. 3.2 General Layout Recommendations
    3. 3.3 RF Layout Recommendations
    4. 3.4 Antenna Placement and Routing
    5. 3.5 Transmission Line Considerations
  4. 4Operational Setup and Testing
    1. 4.1 Measuring the CC3235MOD Current Draw
      1. 4.1.1 Low-Current Measurement with USB Power (<1 mA)
      2. 4.1.2 Active Current Measurements
    2. 4.2 RF Connections
      1. 4.2.1 AP Connection Testing
    3. 4.3 Design Files
      1. 4.3.1 Hardware Design Files
    4. 4.4 Software
  5. 5Development Environment Requirements
    1. 5.1 CCS
    2. 5.2 IAR
  6. 6Additional Resources
    1. 6.1 CC3235MODx Product Page
    2. 6.2 Download CCS or IAR
    3. 6.3 SimpleLink™ Academy for CC3235 SDK
    4. 6.4 TI E2E Support Forums
  7. 7Assembly Drawing and Schematics
    1. 7.1 Assembly Drawing
    2. 7.2 Schematics
      1.      A Manual Information to the End User
        1.       A.1 End User Manual
        2.       A.2 RF Function and Frequency Range
        3.       A.3 FCC and IC Certification and Statement
          1.        A.3.1 FCC
          2.        A.3.2 CAN ICES-3(B) and NMB-3(B) Certification and Statement
          3.        A.3.3 End Product Labeling
          4.        A.3.4 Device Classifications
          5.        A.3.5 FCC Definitions
          6.        A.3.6 Simultaneous Transmission Evaluation
        4.       A.4 EU Certification and Statement
          1.        A.4.1 RF Exposure Information (MPE)
          2.        A.4.2 Simplified DoC Statement
            1.         A.4.2.1 CC3235MODx and CC3235MODAx Modules
            2.         A.4.2.2 LAUNCHCC3235MOD
          3.        A.4.3 Waste Electrical and Electronic Equipment (WEEE)
          4.        A.4.4 OEM and Host Manufacturer Responsibilities
          5.        A.4.5 Antenna Specifications
        5.       A.5 CC3235MODx Approved Antennas
          1.        B Revision History

XDS110-Based Onboard Debug Probe

To keep development easy and cost effective, TI's LaunchPad development kits integrate an onboard debug probe, which eliminates the need for expensive programmers. The CC3235MODSF LaunchPad has the XDS-110-based debug probe (see Figure 2-4), which is a simple and low-cost debugger that supports nearly all TI Arm device derivatives.

GUID-32A101A9-F7A2-463C-81EF-234589023A7F-low.pngFigure 2-4 XDS-110 Debug Probe

 

The dotted line through J101 shown in Figure 2-4 divides the XDS110 debug probe from the target area. The signals that cross this line can be disconnected by jumpers on J101, the isolation jumper block. More details on the isolation jumper block are in Section 2.2.3.

The XDS110 debug probe also provides a "backchannel" UART-over-USB connection with the host, which can be very useful during debugging and for easy communication with a PC. More details can be found in Section 2.2.4.

The XDS110 debug probe hardware can be found in the schematics in Section 7.2 and in the CC3235MOD LaunchPad hardware design files.