SWRU616B September   2023  – April 2024 CC3300 , CC3301 , CC3350 , CC3351

 

  1.   1
  2.   CC33xx WLAN Features Guide
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Scope
    2. 1.2 Acronyms Used in This Document
    3. 1.3 CC33xx Specification
  5. 2General Features
    1. 2.1  Supported Rates
      1. 2.1.1 11ax Rates
      2. 2.1.2 11n Rates
      3. 2.1.3 11a/g Rates
      4. 2.1.4 11b Rates
    2. 2.2  A-MPDU and A-MSDU
    3. 2.3  BA Sessions
    4. 2.4  Keep Alive
      1. 2.4.1 STA
      2. 2.4.2 AP
    5. 2.5  Wake on WLAN (WoW)
    6. 2.6  Antenna Diversity
    7. 2.7  Quality of Service (QoS)
    8. 2.8  Security
      1. 2.8.1 Authentication Types
      2. 2.8.2 Encryption Types
    9. 2.9  Wi-Fi Provisioning
      1. 2.9.1 AP Provisioning
      2. 2.9.2 Bluetooth Low Energy Provisioning
      3. 2.9.3 Wi-Fi Protected Setup (WPS)
        1. 2.9.3.1 WPS PBC
        2. 2.9.3.2 WPS PIN
    10. 2.10 Wi-Fi Power Management Modes
      1. 2.10.1 Power Levels
        1. 2.10.1.1 Active
      2. 2.10.2 Power Save Delivery
        1. 2.10.2.1 Legacy Power Save
  6. 3Single Role: Station
    1. 3.1 Scanning
      1. 3.1.1 Active
      2. 3.1.2 Passive
    2. 3.2 Wi-Fi 6
    3. 3.3 Multicast Filtering
    4. 3.4 Preferred Networks
    5. 3.5 Channel Switch
    6. 3.6 Wi-Fi Power Management Modes
      1. 3.6.1 Power Save Delivery
        1. 3.6.1.1 Unscheduled Asynchronous Power Save Delivery (U-APSD)
        2. 3.6.1.2 Target Wake Time (TWT)
      2. 3.6.2 TI Specific Features
        1. 3.6.2.1 Auto Power-Save Mode
        2. 3.6.2.2 Long Sleep Interval
  7. 4Single Role: AP
    1. 4.1 Hidden SSID
    2. 4.2 Maximum Connected Stations
    3. 4.3 Aging
  8. 5Multirole Multichannel
    1. 5.1 AP-STA
    2. 5.2 STA-STA
  9. 6Wi-Fi/Bluetooth Low Energy Coexistence
  10. 7References
  11. 8Revision History

Wi-Fi Protected Setup (WPS)

The WPS method is an additional way to establish a Wi-Fi connection. The WPS-capable devices declare this capability in the beacons and probes. In this method, the connection is secured and the data exchange encrypted. The WPS connection method is invoked in two ways: hardware and software. Both the hardware and the software processes are invoked using one of two WPS connection methods: PBC or PIN. When one device has started a WPS connection process, the second device has two minutes to respond to the connection initiator device. After two minutes, the connection initiator stops the process. An advantage in either WPS method is that the secured Wi-Fi network can be joined without knowing the privacy key.

A disadvantage is that during the WPS connection process, no specific SSID is defined. This limitation can result in a situation where two independent stations start a WPS process concurrently, for example, within a two-minute time frame, and the peer station will not know which of them to connect to. This situation is called WPS overlapping. The peer station is only able to connect when one station terminates the WPS connection process.