SWRU622A August   2024  – September 2024 AWRL1432 , AWRL6432 , IWRL1432 , IWRL6432 , IWRL6432AOP

 

  1.   1
  2.   Trademarks
  3. 1Introduction
  4. 2Basic Bootloader Flow
    1. 2.1 Programming Serial Data Flash Over UART (Bootloader Service)
    2. 2.2 Binary File Format
    3. 2.3 Flash Programming Sequence
    4. 2.4 Supported UART Commands/Response and Format
    5. 2.5 Flashing Sequence
    6. 2.6 ROM-Assisted Image Download Sequence
    7. 2.7 Booting Application Image
      1. 2.7.1 Booting From Serial Flash
      2. 2.7.2 Bootmode – SPI
      3. 2.7.3 Bootmode - UART
  5. 3Secondary Bootloader
    1. 3.1 SBL Execution Flow
      1. 3.1.1 Flash Memory Partitioning for SBL Execution
      2. 3.1.2 SBL Feature Modifications
      3. 3.1.3 SBL Development Considerations
  6. 4Warm Reset
    1. 4.1 Integrity Verification
    2. 4.2 LSTC/PBIST
    3. 4.3 Watchdog Timer
    4. 4.4 Reset-Triggered Flash Reload of Application
      1. 4.4.1 Hardware Solutions
        1. 4.4.1.1 PMIC I2C Messaging
        2. 4.4.1.2 External Watchdog Timer
        3. 4.4.1.3 External Voltage Monitoring or Voltage Supervisors
      2. 4.4.2 Software Solutions
        1. 4.4.2.1 Setting Boot Vector to 0x0
  7. 5Relevant Registers
    1. 5.1 Reset Registers
    2. 5.2 PC Registers
      1. 5.2.1 Addresses
  8. 6Revision History

SBL Feature Modifications

Image Select:

  • The SBL can be modified to provide options for which image can be loaded into RAM
    • The current flow only allows for one image and one back-up image that is automatically loaded if any issue occurs during the loading of the main image
    • This can be instead interrupted by a UART_read that waits for a user input on which section in SFLASH to pull image data from
      • Based on this selection, one of 2-3 images can be loaded as opposed to a single image
  • This modification provides further flexibility in what can be loaded onto the device and provides a variety of options for the end-user to explore