TIDUBF0 January   2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 PCB and Form Factor
      2. 2.2.2 Power Supply Design
        1. 2.2.2.1 POC Filter
        2. 2.2.2.2 Power Supply Considerations
          1. 2.2.2.2.1 Choosing External Components
          2. 2.2.2.2.2 Choosing the Buck 1 Inductor
          3. 2.2.2.2.3 Choosing the Buck 2 and Buck 3 Inductors
        3. 2.2.2.3 Functional Safety
    3. 2.3 Highlighted Products
      1. 2.3.1 OX01F10 Imager
      2. 2.3.2 DS90UB933-Q1
      3. 2.3.3 TPS650320-Q1
    4. 2.4 System Design Theory
  8. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Hardware Setup
      2. 3.1.2 FPD-Link III I2C Initialization
      3. 3.1.3 OX01F10 Initialization
    2. 3.2 Test Setup
      1. 3.2.1 Power Supplies Start Up
      2. 3.2.2 Setup for Verifying I2C Communications
    3. 3.3 Test Results
      1. 3.3.1 Power Supplies Start-Up
      2. 3.3.2 Power Supply Start-Up—1.8-V Rail and PDB
      3. 3.3.3 Power Supply Voltage Ripple
      4. 3.3.4 Power Supply Load Currents
      5. 3.3.5 I2C Communications
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
        2. 4.1.3.2 PMIC Layout Recommendations
        3. 4.1.3.3 Serializer Layout Recommendations
        4. 4.1.3.4 Imager Layout Recommendations
        5. 4.1.3.5 PCB Layer Stackup Recommendations
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
  10. 5Tools and Software
  11. 6Documentation Support
  12. 7Support Resources
  13. 8Trademarks

Description

This camera module reference design addresses the need for small low-cost cameras in automotive driver assistance systems (ADAS) by combining a 1.3-megapixel imager with integrated image signal processor (ISP) with a 12-bit, 100-MHz TI FPD-Link III serializer. Additionally, it provides a power-management integrated circuit (PMIC) power supply for both devices in an ultra-small form factor. This design includes a high-speed serial interface to connect a remote automotive camera module to a display or machine vision processing system with a coaxial cable transmitting both data and power. The FPD-Link III SerDes technology used in this reference design enables the transmission of raw or processed video data, bidirectional control signals, and power over coax (POC) using a single cable.