TIDUBF0 January   2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 PCB and Form Factor
      2. 2.2.2 Power Supply Design
        1. 2.2.2.1 POC Filter
        2. 2.2.2.2 Power Supply Considerations
          1. 2.2.2.2.1 Choosing External Components
          2. 2.2.2.2.2 Choosing the Buck 1 Inductor
          3. 2.2.2.2.3 Choosing the Buck 2 and Buck 3 Inductors
        3. 2.2.2.3 Functional Safety
    3. 2.3 Highlighted Products
      1. 2.3.1 OX01F10 Imager
      2. 2.3.2 DS90UB933-Q1
      3. 2.3.3 TPS650320-Q1
    4. 2.4 System Design Theory
  8. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Hardware Setup
      2. 3.1.2 FPD-Link III I2C Initialization
      3. 3.1.3 OX01F10 Initialization
    2. 3.2 Test Setup
      1. 3.2.1 Power Supplies Start Up
      2. 3.2.2 Setup for Verifying I2C Communications
    3. 3.3 Test Results
      1. 3.3.1 Power Supplies Start-Up
      2. 3.3.2 Power Supply Start-Up—1.8-V Rail and PDB
      3. 3.3.3 Power Supply Voltage Ripple
      4. 3.3.4 Power Supply Load Currents
      5. 3.3.5 I2C Communications
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
        2. 4.1.3.2 PMIC Layout Recommendations
        3. 4.1.3.3 Serializer Layout Recommendations
        4. 4.1.3.4 Imager Layout Recommendations
        5. 4.1.3.5 PCB Layer Stackup Recommendations
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
  10. 5Tools and Software
  11. 6Documentation Support
  12. 7Support Resources
  13. 8Trademarks

Power Supply Load Currents

The last measurements to take in regard to the power supplies on the camera module are the load currents for the system supply, and the load currents on the OX01F10 imager. These measurements verify total power consumption of the camera module as well as the load current for each individual rail on the OX01F10 imager. For the following test data, each rail is drawing the specific load current outlined for the serializer and imager. All load current measurements are taken while a video output stream is present.

Table 3-1 displays the currents measured through each supply voltage in this reference design. The 9-V load current is the total input load for the camera module and measures at 85 mA. The total power consumption corresponds to an overall system efficiency of 67%, close to the 68% value derived in Section 2.4.

Table 3-1 Measured Supply Currents
VOLTAGE RAILMEASURED CURRENT
9.0 V85 mA
3.8 V153 mA
3.3 V31 mA
1.8 V130 mA
1.1 V151 mA