TIDUC26A April   2022  – April 2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Inductive Touch Buttons
      2. 2.2.2 Sensor Coil Placement
      3. 2.2.3 Collecting Data from Multiple LDCs
      4. 2.2.4 Magnetic Dial Implementation
      5. 2.2.5 CORDIC Algorithm
    3. 2.3 Highlighted Products
      1. 2.3.1 LDC3114-Q1
      2. 2.3.2 TMAG5273
      3. 2.3.3 DRV2605
      4. 2.3.4 TLV75518
      5. 2.3.5 TCA9534
      6. 2.3.6 PCA9543
      7. 2.3.7 Sensor Control Board
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Firmware and Programming
      1. 3.1.1 Operational Mode 1
      2. 3.1.2 Operational Mode 2
      3. 3.1.3 Operational Mode 3
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1 ABS Force Response
      2. 3.3.2 ABS Gain Corrected
      3. 3.3.3 Nylon Force Response
      4. 3.3.4 Nylon Gain Corrected
  10. 4Hardware Components
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6Revision History

Test Setup

The buttons on this reference design were designed with the same parameters but due to mechanical tolerances there can be slight differences in performance. Since the design is meant to be 3D printed, different printers or printing technologies have different accuracies and tolerances. Additionally, if a different material is used for the 3D printing, then deflection of the button surface changes and can require more force for a press event to trigger a button output. Even though the buttons on a single print all have the same printer and material, there can still be variation in force required for a button, especially if the design is hand assembled. The tape used to keep the mechanical tolerance can have an impact on the button if it is not uniform or differs between units. To showcase this, an analog force gauge is used to apply a force to the button surface. The force required for each button threshold to trigger is then recorded as well as the raw data response for varying forces. Additionally, testing is performed on two different material types with different 3D printing processes while keeping the same mechanical design.