TIDUDO6B May   2019  – October 2020

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Introduction to Parameters Measured Using TIDA-01580
    2. 1.2 High-Level System Description
    3. 1.3 Typical Applications
    4. 1.4 System Specifications and Design Features
    5. 1.5 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AFE4900
      2. 2.2.2 CC2640R2F
      3. 2.2.3 TPS61099
      4. 2.2.4 TPS63036
      5. 2.2.5 TPD1E10B06
    3. 2.3 System Design Theory and Design Considerations
      1. 2.3.1  AFE4900 and Power Supply
      2. 2.3.2  CC2640R2F Microcontroller
      3. 2.3.3  PPG Measurement
      4. 2.3.4  ECG Measurement
        1. 2.3.4.1 Two-Electrode Configuration
        2. 2.3.4.2 Three-Electrode Configuration
      5. 2.3.5  Selecting TX Supply (TX_SUP) Value for Driving LEDs
      6. 2.3.6  Generating TX Supply for Driving LEDs
        1. 2.3.6.1 Programming Output Voltage
        2. 2.3.6.2 Maximum Output Current
        3. 2.3.6.3 Input and Output Capacitor Selection
        4. 2.3.6.4 Switching Frequency
        5. 2.3.6.5 WEBENCH® Simulation for TPS61099 Boost Converter
      7. 2.3.7  Generating RX Supply for AFE4900
        1. 2.3.7.1 Setting Output Voltage
        2. 2.3.7.2 Capacitor Selection
        3. 2.3.7.3 Output Current Limit
        4. 2.3.7.4 Inductor Selection
        5. 2.3.7.5 TINA-TI™ Simulation for TPS63036
      8. 2.3.8  Generating I/O Supply
      9. 2.3.9  Battery Input and Reservoir Capacitors
      10. 2.3.10 Battery Life Calculations
        1. 2.3.10.1 AFE4900 Current Consumption
        2. 2.3.10.2 CC2640R2F Current Consumption
        3. 2.3.10.3 On-State Current Calculations
        4. 2.3.10.4 Off-State Current Calculations (Considering Battery Voltage = 3 V)
      11. 2.3.11 External Memory
      12. 2.3.12 LED Indications
      13. 2.3.13 Connections Between Sensor Board and ECG Board
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
        1. 3.1.1.1 Connecting Optical Sensor and ECG Boards to Main Board
        2. 3.1.1.2 Difference Between PPG Sensor Boards
      2. 3.1.2 Software
        1. 3.1.2.1 Software Loading for TIDA-01580 Board (Transmit Side of BLE)
        2. 3.1.2.2 LabVIEW™ File Execution for Checking Measurement Data (Receive Side of BLE)
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
      2. 3.2.2 Test Results
        1. 3.2.2.1 Heart-Rate Measurement Using PPG (Green LED) and ECG
        2. 3.2.2.2 SpO2 Measurement Using Red and IR LEDs
        3. 3.2.2.3 PTT Measurement
        4. 3.2.2.4 Lead-Off Detect
          1. 3.2.2.4.1 AC Lead-Off Detect
          2. 3.2.2.4.2 DC Lead-Off Detect
        5. 3.2.2.5 Low-Battery Indication
        6. 3.2.2.6 Waveforms for DC/DC Converters
        7. 3.2.2.7 Battery Life Test
  9. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1  Layout for Main Board
      2. 4.3.2  Connection From PDs to AFE
      3. 4.3.3  Connections From LEDs to AFE
      4. 4.3.4  Connections From ECG PADs to AFE
      5. 4.3.5  Connections Between BT and AFE
      6. 4.3.6  Connections Between BT Antenna and Chip
      7. 4.3.7  Boost Converter
      8. 4.3.8  Buck-Boost Converter
      9. 4.3.9  Layouts for PPG Sensor Boards
      10. 4.3.10 Layout for ECG Sensor Board
      11. 4.3.11 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  10. 5Software Files
  11. 6Related Documentation
    1. 6.1 Trademarks
  12. 7About the Authors
  13.   Revision History

Software Loading for TIDA-01580 Board (Transmit Side of BLE)

  1. Plug in the LAUNCHXL-CC2640R2 board on the USB port of the PC. See the setup in Figure 3-9 and Figure 3-10. Table 3-1 lists the connections between the TIDA-01580 board and the LAUNCHXL-CC2640R2 board.
    GUID-0746F24E-2BC6-4C10-B1FB-527A6758802B-low.gifFigure 3-9 Programming TIDA-01580 Board Using LAUNCHXL-CC2640R2
  2. Insert one CR3032 battery into the BT1 connector on the TIDA-01580 board, and power it on by using the S2 switch (ensure J8 is shorted on the TIDA-01580 board).
  3. Open CCS as administrator (Right click on the CCS icon and run as administrator).
  4. Click on the Project option in the main toolbar and then click Import CCS projects.
  5. Browse to select the installed firmware (Default: C:\Program Files (x86)\Texas Instruments\TIDA-01580\TIDA-01580_firmware) and import all projects. Click the OK button.
  6. Click View, Project Explorer and select TIDA-01580_firmware_tx.
  7. Click on the Run and Debug buttons. This action programs the board with the selected project file.
  8. Disconnect the TIDA-01580 board from the LAUNCHXL-CC2640R2 device.
GUID-ECD53D96-6B8A-4CC1-A2FA-EEE581AA7603-low.gifFigure 3-10 Connections Between TIDA-01580 Board and LAUNCHXL-CC2640R2
Table 3-1 Connections for Programming TIDA-01580 Using LAUNCHXL-CC2640R2
CONNECTION ON LAUNCHXL-CC2640R2
(ON XDS110 OUTSIDE)
PIN NO.CONNECTION ON
TIDA-01580 BOARD (CONNECTOR J6)
PIN NO.
GND1GND1
RESET6CC_RESET7
TMS7JTAG_TMSC6
TCK8JTAG_TCKC5
TDI9TDI4
TDO10TDO3