TIDUE90 July   2018

 

  1.    Description
  2.    Resources
  3.    Features
  4.    Applications
  5.    Design Images
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Classification of Scenarios With Liquid Present
      2. 2.2.2 Liquid Influence on Capacitive Touch Sensing
      3. 2.2.3 Self Capacitance and Mutual Capacitance
        1. 2.2.3.1 Self Capacitance
        2. 2.2.3.2 Mutual Capacitance
      4. 2.2.4 Other Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 MSP430FR2633
    4. 2.4 System Design Theory
      1. 2.4.1 Shield Sensor Electrodes
      2. 2.4.2 Mutual Capacitance Shielding
      3. 2.4.3 Design for Noise Immunity
      4. 2.4.4 Power Supply Grounding Effect
  8. 3Hardware, Software, Test Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
      2. 3.1.2 Software
    2. 3.2 Test and Results
      1. 3.2.1 Liquid Test With Well Grounded Power Supply
        1. 3.2.1.1 Continuous Water Flow Test
        2. 3.2.1.2 Continuous Water Spray Test
      2. 3.2.2 Conductive Noise Immunity Test
      3. 3.2.3 Liquid Test With Battery-Powered Supply
        1. 3.2.3.1 Continuous Water Flow Test
        2. 3.2.3.2 Continuous Water Spray Test
      4. 3.2.4 Third Party Test Report
  9. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  10. 5Software Files
  11. 6Related Documentation
    1. 6.1 Trademarks
  12. 7About the Author

Self Capacitance and Mutual Capacitance

Self capacitance and mutual capacitance are the two capacitive sensing methods to detect touch events, and they behave slightly different when exposed to liquids.