TIDUEB8C July   2018  – March 2021 TPS274160

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 LM5165
      2. 2.2.2 TLC59282
      3. 2.2.3 TPS4H160-Q1
      4. 2.2.4 INA253
      5. 2.2.5 TIOL111
    3. 2.3 System Design Theory
      1. 2.3.1 IO-Link PHY
      2. 2.3.2 Current Sink
      3. 2.3.3 Power Supply for L+
      4. 2.3.4 Power Supply
      5. 2.3.5 Pinouts
    4. 2.4 Software Frame Handler
      1. 2.4.1 PRU-ICSS IO-Link Frame-Handler
        1. 2.4.1.1 Performance Advantages and Benefits
        2. 2.4.1.2 Principle of Operation
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
      2. 3.1.2 Software
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
      2. 3.2.2 Test Results
        1. 3.2.2.1 IO-Link Wake-Up Pulse
        2. 3.2.2.2 L+ Turnon Behavior
        3. 3.2.2.3 Current Sink on CQ
        4. 3.2.2.4 Residue Voltage
        5. 3.2.2.5 IO-Link Physical Layer Test Summary
        6. 3.2.2.6 Current Sense on Each Port
        7. 3.2.2.7 TPS4H160 Thermal Behavior
  9. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 PCB Layout Recommendations
      1. 4.3.1 Layout Prints
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  10. 5Software Files
  11. 6Related Documentation
    1. 6.1 Trademarks
  12. 7About the Author
  13. 8Revision History

System Design Theory

This reference design implements an IO-Link master using the TIOL111 device PHY and surrounding components needed to build a complete IO-Link master design. Therefore, on the physical side in addition to the TIOL111 device, a power supply for the ports, as well as a current sink is necessary. Also the hardware must be able to drive the wake-up pulse.

On the other side it is necessary to have a hardware as well as frame handler that support all three communication speeds. The TIOL111 device used as PHY here can handle all speeds (COM1, COM2, COM3) the eight port frame handler is implemented on the PRU of the used AM437x.

To realize an eight-port master, eight TIOL111 devices are necessary; For each four ports, one TPS4H160 is necessary. Each port also needs one current sink. This results in only eight TIOL111 devices (IO-Link PHY), two TPS4H160 devices (high-side switch) and one TLC59282 device(LED driver).