TIDUEJ6A January   2019  – July 2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Flow Measurement
      2. 2.2.2 ToF Measurement
        1. 2.2.2.1 ADC-Based Acquisition Process
        2. 2.2.2.2 Ultrasonic Sensing Flow-Metering Library
      3. 2.2.3 Low-Power Design
        1. 2.2.3.1 Energy-Efficient Software
        2. 2.2.3.2 Optimized Hardware Design
        3. 2.2.3.3 Efficient Use of FRAM
        4. 2.2.3.4 The LEA Advantage
    3. 2.3 Highlighted Products
      1. 2.3.1 MSP430FR6043
      2. 2.3.2 OPA836 and OPA838
      3. 2.3.3 TS5A9411
    4. 2.4 System Design Theory
      1. 2.4.1 Signal Processing for ToF
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
        1. 3.1.1.1 EVM430-FR6043
      2. 3.1.2 Software
        1. 3.1.2.1 MSP Driver Library (MSP DriverLib)
        2. 3.1.2.2 Ultrasonic Sensing Flow Metering Library
        3. 3.1.2.3 Application
          1. 3.1.2.3.1 Application Customization
          2. 3.1.2.3.2 LCD Stand-Alone Mode
        4. 3.1.2.4 USS Design Center (PC GUI)
      3. 3.1.3 Transducer and Meter
        1. 3.1.3.1 Frequency Characterization of Transducer and Meter
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
        1. 3.2.1.1 Connecting Hardware
        2. 3.2.1.2 Building and Loading Software
          1. 3.2.1.2.1 Using Code Composer Studio IDE
          2. 3.2.1.2.2 Using IAR Embedded Workbench IDE
        3. 3.2.1.3 Executing Application
        4. 3.2.1.4 Configure Device and Observe Results Using GUI
        5. 3.2.1.5 Customization and Optimization
      2. 3.2.2 Test Results
        1. 3.2.2.1 Single-Shot Standard Deviation
        2. 3.2.2.2 Zero-Flow Drift
        3. 3.2.2.3 Absolute Time of Flight Measurements
        4. 3.2.2.4 Variability in Zero Flow Drift Across Transducers
        5. 3.2.2.5 Flow Measurements
        6. 3.2.2.6 Average Current Consumption
        7. 3.2.2.7 Memory Footprint
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
      6. 4.1.6 Assembly Drawings
    2. 4.2 Software Files
    3. 4.3 Related Documentation
    4. 4.4 Terminology
    5. 4.5 Trademarks
    6. 4.6 Support Resources
  10. 5About the Authors
  11. 6Revision History

EVM430-FR6043

The EVM430-FR6043 evaluation kit is a development platform that can be used to evaluate the performance of the MSP430FR6043 MCU for ultrasonic sensing applications (for example, smart gas meters). The kit provides a flexible solution to let engineers quickly evaluate and develop with the MSP430FR6043 MCU, with a variety of transducers up to 2.5 MHz. The EVM can display the measurement parameters using the onboard LCD and connectors for RF communication modules.

The EVM430-FR6043 kit can be USB-powered, but it also includes a provision for external power. The EVM also has headers for a BoosterPack plug-in module to interface with external boards through various interfaces like I2C, SPI, UART, or GPIO, as well as RF communication modules. The EVM has an onboard, segmented LCD and an onboard, eZ-FET emulation circuit to enable programming and debug.

When using USB as the power source, set the S5 switch to the middle position (ezFET). When using an external power source, set the S5 switch to the top position (External) (see Figure 4-1).

GUID-FE52F6E1-C039-4478-9C8B-492E190143AE-low.pngFigure 4-1 eZ-FET Power Selection

Figure 4-2 shows J1 and J3 set for the USB power source (ezFET).

GUID-840FC8C5-27AD-494D-8CD1-7FBAF141FA1F-low.pngFigure 4-2 USB (eZ-FET) Power Jumper Configuration
Note:

All of the test results presented in this guide used an external power supply (EXT_POW).