TIDUEY8 March   2023

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Design Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 LMK04832-SP
      2. 2.2.2 LMX2615-SP
      3. 2.2.3 CDCLVP111-SP
      4. 2.2.4 ADC12DJ3200QML-SP
    3. 2.3 Design Steps
      1. 2.3.1 Multiple JESD204B Synchronization Requirements
      2. 2.3.2 Clock Tree Design
        1. 2.3.2.1 Clock Frequency Plan
        2. 2.3.2.2 Clock Tree Components
          1. 2.3.2.2.1 Clock Reference
          2. 2.3.2.2.2 Clock Reference Buffer
          3. 2.3.2.2.3 Clock Distribution
          4. 2.3.2.2.4 Frequency Synthesis
        3. 2.3.2.3 Phase Delay Adjustment Options
        4. 2.3.2.4 Phase-Noise Optimization
        5. 2.3.2.5 Single-Event Effects (SEE) Considerations
        6. 2.3.2.6 Expanding Clock Tree for MIMO Systems
      3. 2.3.3 Power Management
        1. 2.3.3.1 Power Design Considerations
        2. 2.3.3.2 Radiation Hardened (Rad-Hard) Power Tree
          1. 2.3.3.2.1 Radiation-Hardness-Assured (RHA) Load-Switches
          2. 2.3.3.2.2 Radiation-Hardness-Assured (RHA) DC/DC Buck Converter
          3. 2.3.3.2.3 Radiation-Hardness-Assured (RHA) Low-Dropout (LDO) Regulators
            1. 2.3.3.2.3.1 3.3-V Linear Regulator
            2. 2.3.3.2.3.2 4.5-V Linear Regulator
        3. 2.3.3.3 Overcurrent Detection Circuit
  8. 3Getting Started Hardware and Software
    1. 3.1 Hardware Configuration
      1. 3.1.1 Clocking Board Setup
        1. 3.1.1.1 Power Supply
        2. 3.1.1.2 Input Reference Signals
        3. 3.1.1.3 Input sync Signal
        4. 3.1.1.4 Output Signals
        5. 3.1.1.5 Programming Interface
        6. 3.1.1.6 FMC+ Adapter Board Setup
        7. 3.1.1.7 ADC12DJ3200 EVM Setup
        8. 3.1.1.8 TSW14J57EVM Setup
        9. 3.1.1.9 Multichannel Synchronization Setup
    2. 3.2 Software
      1. 3.2.1 Software Required
      2. 3.2.2 Clocking Board Programming Sequence
      3. 3.2.3 ADC12DJ3200CVAL EVM Programming Sequence
      4. 3.2.4 TSW14J57EVM Evaluation Programming Sequence
  9. 4Testing and Results
    1. 4.1 Test Setup
    2. 4.2 Results
      1. 4.2.1 Phase Noise Measurement Results
      2. 4.2.2 Multichannel Clock Phase Alignment
      3. 4.2.3 Signal Chain Performance
      4. 4.2.4 Channel-to-Channel Skew Measurement
    3. 4.3 Summary and Conclusion
  10. 5Design and Documentation Support
    1. 5.1 Design Support
      1. 5.1.1 Schematics
      2. 5.1.2 Bill of Materials
    2. 5.2 Documentation Support
    3. 5.3 Support Resources
    4. 5.4 Trademarks
  11. 6About the Authors
    1. 6.1 Acknowledgments
Radiation-Hardness-Assured (RHA) Load-Switches
GUID-20221202-SS0I-PJGJ-SLXF-FWJDC085S1TZ-low.svgFigure 2-13 eFuse Configuration Options

eFuse Design Specifications:

  • Redundant architecture
  • VIN = 5 V
  • Ioutmax = 6 A

RIL (Ω) = 45500 / (IL (A)) = 7.58 kΩ; standard value 7.59 kΩ

Calculations were also made accounting for a 10% drop in supply (4.5 V). The following calculations show that with an RTOP of 100 kΩ, that RBOTTOM is 11.66 kΩ; modified to a standard value of 11.5 kΩ.

Equation 2. RBOT_EN (kΩ ) ≥ 47 / (VUVLO_TRIP – 0.47)

where

  • VUVLO_TRIP = 4.5 V, resulting in RBOT_EN = 11.66 kΩ

Standard value chosen RBOT_EN = 11.5 kΩ

Equation 3. VIHEN × (REN_TOP + REN_BOT) / REN_BOT ≥ VIN

where

  • VIHEN = 0.61 V, REN_TOP = 100 kΩ, REN_BOT = 11.5 kΩ

Resulting in: 5.914 V ≥ VIN.

The overvoltage protection (OVP) feature of the device can be configured using a resistor divider from VIN connected to the OVP pin. The trip voltage for the OVP has to be less than the absolute maximum VIN voltage. A voltage at the OVP pin greater than VOVPR trips the OVP feature and turns off the FET and a voltage less than VOVPF keeps the FET on.

Equation 4. RBOT_EN (kΩ) ≥ 63 / (VOVP_TRIP – 0.63)

where

  • VOVP_TRIP = 6.5 V, resulting in RBOT_EN = 10.7 kΩ
Equation 5. VOVPF × (REN_TOP + REN_BOT) / REN_BOT ≥ VIN

where

  • VOVPF = 0.5 V, REN_TOP = 100 kΩ, REN_BOT = 10.7 kΩ

Resulting in: 5.17 V ≥ VIN.

The switch is controlled by an on and off input (EN).

GUID-20221202-SS0I-2MHT-TDG5-XLCSHND3BSRQ-low.svgFigure 2-14 One Branch of Redundant eFuse