TIDUF00 November   2021

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Why Radar?
    2. 1.2 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
      1. 2.1.1 Automated Parking Software Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AWR1843AOP Single-Chip Radar Solution
      2. 2.2.2 mmWave SDK
    3. 2.3 System Design Considerations
      1. 2.3.1 Usage Case Geometry and Sensor Considerations
      2. 2.3.2 AWR1843AOP Antenna
      3. 2.3.3 Processing Chain
    4. 2.4 Chirp Configuration Profile
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
      2. 3.1.2 Software and GUI
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
      2. 3.2.2 Test Results
        1. 3.2.2.1 Use Case – Vehicle, Bicycle, Pedestrian Detection
        2. 3.2.2.2 Use Case – Traffic Cone, Grocery Cart, Sign Pole, Pipe, Shrub
        3. 3.2.2.3 Use Case – Pedestrian Standing in Empty Parking Space
        4. 3.2.2.4 Use Case – Pedestrian Standing Next to Car
        5. 3.2.2.5 Use Case – Empty Parking Space
        6. 3.2.2.6 Use Case – Cross Traffic Alert
        7. 3.2.2.7 Use Case – Parking Block, Curb Detection
  9. 4Design Files
    1. 4.1 Design Database
    2. 4.2 Schematic, Assembly, and BOM
  10. 5Software Files
  11. 6Related Documentation
    1. 6.1 Trademarks

System Description

Level 3 and higher autonomous driving is moving away from parking assistance to automated parking of cars, and mmWave sensors are increasingly being considered as a solution by car manufacturers and Tier1’s. This is due to the advantages which the mmWave sensors provide compared to other sensing technologies. The mmWave sensors can be placed behind bumpers, with no need to drill holes inside bumpers, for an aesthetic solution. At a system level, the TI mmWave sensors can be re-purposed because of the multimodal nature. That is, when the car is in motion, the rear corner sensors can be used as a blind spot detector, and when the car is in parking mode, it can be used for parking. The number of sensors required for a 360-degree sensing around the car is also reduced. In addition, the mmWave sensors provide high-resolution detection in a wide field of view in azimuth, as well as the elevation plane in any challenging environmental conditions.