TIDUF00 November   2021

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Why Radar?
    2. 1.2 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
      1. 2.1.1 Automated Parking Software Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 AWR1843AOP Single-Chip Radar Solution
      2. 2.2.2 mmWave SDK
    3. 2.3 System Design Considerations
      1. 2.3.1 Usage Case Geometry and Sensor Considerations
      2. 2.3.2 AWR1843AOP Antenna
      3. 2.3.3 Processing Chain
    4. 2.4 Chirp Configuration Profile
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
      2. 3.1.2 Software and GUI
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
      2. 3.2.2 Test Results
        1. 3.2.2.1 Use Case – Vehicle, Bicycle, Pedestrian Detection
        2. 3.2.2.2 Use Case – Traffic Cone, Grocery Cart, Sign Pole, Pipe, Shrub
        3. 3.2.2.3 Use Case – Pedestrian Standing in Empty Parking Space
        4. 3.2.2.4 Use Case – Pedestrian Standing Next to Car
        5. 3.2.2.5 Use Case – Empty Parking Space
        6. 3.2.2.6 Use Case – Cross Traffic Alert
        7. 3.2.2.7 Use Case – Parking Block, Curb Detection
  9. 4Design Files
    1. 4.1 Design Database
    2. 4.2 Schematic, Assembly, and BOM
  10. 5Software Files
  11. 6Related Documentation
    1. 6.1 Trademarks

Test Setup

The AWR1843AOP EVM was used for testing. The EVM was placed vertically with USB connector at the top as shown in Figure 3-1. For some use cases the EVM had a 0 degree rotation (boresight), for some other use cases it had a 45 degree rotation. The EVM rotation is described for each use case.

The software used for testing was described in previous sections. The software is available in the TI Resource Explorer in the Software section as part of the mmWave Automotive Toolbox.

GUID-20211102-SS0I-DMLR-NQPX-QBP8TQJCSLXD-low.jpg Figure 3-1 AWR1843AOP EVM Setup.