TIDUF09 December   2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Theory of Operation
    4. 2.4 Highlighted Products
      1. 2.4.1 TPS7A57 Low Dropout (LDO) Regulator
      2. 2.4.2 LMG1020 Low Side Driver
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
      1. 3.2.1 Optional Load Transient Circuit Operation
    3. 3.3 Test Results
      1. 3.3.1 Current Sharing
      2. 3.3.2 VLOAD vs ILOAD
      3. 3.3.3 Load Transient Response
      4. 3.3.4 Current Limit
      5. 3.3.5 Startup
      6. 3.3.6 Noise
      7. 3.3.7 PSRR
      8. 3.3.8 Thermal
      9. 3.3.9 Thermal Limit Protection
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  10. 5About the Author

LMG1020 Low Side Driver

The LMG1020 device is a single, low-side driver designed for driving GaN FETs and logic-level MOSFETs in high-speed applications including LiDAR, time-of-flight, facial recognition, and any power converters involving low side drivers. The design simplicity of the LMG1020 enables extremely fast propagation delays of 2.5 nanoseconds and minimum pulse width of 1 nanosecond. The drive strength is independently adjustable for the pull-up and pull-down edges by connecting external resistors between the gate and OUTH and OUTL, respectively.

The driver features undervoltage lockout (UVLO) and over-temperature protection (OTP) in the event of overload or fault conditions.

0.8-mm × 1.2-mm WCSP package of LMG1020 minimizes gate loop inductance and maximizes power density in high-frequency applications.