TIDUF16 December   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Photodiode, TIA, and ADC
      2. 2.2.2 LED Driving
      3. 2.2.3 Power
      4. 2.2.4 Display, Orientation, and Communication Features
      5. 2.2.5 Software
        1. 2.2.5.1 Timing Structure
        2. 2.2.5.2 Oversampling and Digital Filtering to Increase Dynamic Range
        3. 2.2.5.3 Calculating Vitals
    3. 2.3 Highlighted Products
      1. 2.3.1 MSPM0L1306
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Software Requirements
      1. 3.2.1 TI GUI
      2. 3.2.2 CCS Project
      3. 3.2.3 Analog Engineers Calculator
    3. 3.3 Test Setup
    4. 3.4 Test Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks

Calculating Vitals

Because the oversampled data contains a combined DC and AC signal, a simple digital low-pass IIR filter capable of isolating the DC signal is applied. The filter works by adding a small portion of the difference between the input and the last output value to the last output value to form the new output value. If there is a step change in the input, the output performs a correction to be the same as the input over a period of time. The rate of change is controlled by a programmable coefficient determined by the user. The TIDA-010267 uses a coefficient determined by experimentation. Algorithms that detect peaks and troughs in the AC signal of the PPG are used to note the period between signal peak, and thus, the period of the heartbeat. These same detections are used in conjunction with the DC isolation to calculate R and eventually %SpO2.