TIDUF25 june   2023 ADS131M08 , MSPM0G1507

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 End Equipment
    2. 1.2 Electricity Meter
    3. 1.3 Power Quality Meter, Power Quality Analyzer
    4. 1.4 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 External Supply Voltage Supervisor (SVS) With TPS3840
      2. 2.2.2 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
      3. 2.2.3 Analog Inputs
        1. 2.2.3.1 Voltage Measurement Analog Front End
        2. 2.2.3.2 Current Measurement Analog Front End
    3. 2.3 Highlighted Products
      1. 2.3.1  ADS131M08
      2. 2.3.2  MSPM0G3507
      3. 2.3.3  MSP430FR4131 for Driving Segmented LCD Displays
      4. 2.3.4  TPS3840
      5. 2.3.5  THVD1400
      6. 2.3.6  ISO6731
      7. 2.3.7  ISO6720
      8. 2.3.8  TRS3232E
      9. 2.3.9  TPS709
      10. 2.3.10 TMAG5273
  9. 3System Design Theory
    1. 3.1  How to Implement Software for Metrology Testing
    2. 3.2  Clocking System
    3. 3.3  UART Setup for GUI Communication
    4. 3.4  Real-Time Clock (RTC)
    5. 3.5  LCD Controller in MSP430FR4131
    6. 3.6  Direct Memory Access (DMA)
    7. 3.7  ADC Setup
    8. 3.8  Foreground Process
      1. 3.8.1 Formulas
    9. 3.9  Background Process
    10. 3.10 Software Function per_sample_dsp()
      1. 3.10.1 Voltage and Current Signals
      2. 3.10.2 Frequency Measurement and Cycle Tracking
    11. 3.11 LED Pulse Generation
    12. 3.12 Phase Compensation
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Cautions and Warnings
    2. 4.2 Test Setup
      1. 4.2.1  Connecting the TIDA-010243 to the Metering Test Equipment
      2. 4.2.2  Power Supply Options and Jumper Settings
      3. 4.2.3  Electricity Meter Metrology Accuracy Testing
      4. 4.2.4  Viewing Metrology Readings and Calibration
        1. 4.2.4.1 Viewing Results From LCD
        2. 4.2.4.2 Calibrating and Viewing Results From PC
      5. 4.2.5  Calibration and FLASH Settings for MSPM0+ MCU
      6. 4.2.6  Gain Calibration
      7. 4.2.7  Voltage and Current Gain Calibration
      8. 4.2.8  Active Power Gain Calibration
      9. 4.2.9  Offset Calibration
      10. 4.2.10 Phase Calibration
      11. 4.2.11 Software Code Example
    3. 4.3 Test Results
      1. 4.3.1 SVS Functionality Testing
      2. 4.3.2 Electricity Meter Metrology Accuracy Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
      4. 5.1.4 Layout Prints
      5. 5.1.5 Gerber Files
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

LCD Controller in MSP430FR4131

The LCD_E peripheral module on the MSP430FR4131 MCU can support up to 8-MUX displays with 256 segments or 4-MUX with 144 segment displays, as used in this design with the FH-1152P LCD. In the PCB layout-driven design process, LCD_E offers fully-software-configurable segment S and common COM signals which are connected to the respective MSP430 device pins. This enables an optimized routing of the PCB which avoids signal crossings and keeps signals on one side of the PCB only, here the top layer. If the internal charge pump of the LCD module is used, place the externally provided capacitor on the LCDCAP0 and LCDCAP1 pins as close as possible to the MCU. Connect the capacitor to the device using a short and direct trace. TI recommends using the VLO on-chip oscillator for the lowest system cost. The ultra-low power VLO has an accuracy of 10 kHz ±50% so calibrate the VLO against the ±1% accurate on-chip 16-MHz digitally-controlled oscillator (DCO) with frequency-locked loop (FLL).

Alternatively, a 32.768-kHz clock output from MSPM0G3507 device can be provided to the MSP430FR4131 using a GPIO output.