TIDUF25 june   2023 ADS131M08 , MSPM0G1507

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 End Equipment
    2. 1.2 Electricity Meter
    3. 1.3 Power Quality Meter, Power Quality Analyzer
    4. 1.4 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 External Supply Voltage Supervisor (SVS) With TPS3840
      2. 2.2.2 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
      3. 2.2.3 Analog Inputs
        1. 2.2.3.1 Voltage Measurement Analog Front End
        2. 2.2.3.2 Current Measurement Analog Front End
    3. 2.3 Highlighted Products
      1. 2.3.1  ADS131M08
      2. 2.3.2  MSPM0G3507
      3. 2.3.3  MSP430FR4131 for Driving Segmented LCD Displays
      4. 2.3.4  TPS3840
      5. 2.3.5  THVD1400
      6. 2.3.6  ISO6731
      7. 2.3.7  ISO6720
      8. 2.3.8  TRS3232E
      9. 2.3.9  TPS709
      10. 2.3.10 TMAG5273
  9. 3System Design Theory
    1. 3.1  How to Implement Software for Metrology Testing
    2. 3.2  Clocking System
    3. 3.3  UART Setup for GUI Communication
    4. 3.4  Real-Time Clock (RTC)
    5. 3.5  LCD Controller in MSP430FR4131
    6. 3.6  Direct Memory Access (DMA)
    7. 3.7  ADC Setup
    8. 3.8  Foreground Process
      1. 3.8.1 Formulas
    9. 3.9  Background Process
    10. 3.10 Software Function per_sample_dsp()
      1. 3.10.1 Voltage and Current Signals
      2. 3.10.2 Frequency Measurement and Cycle Tracking
    11. 3.11 LED Pulse Generation
    12. 3.12 Phase Compensation
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Cautions and Warnings
    2. 4.2 Test Setup
      1. 4.2.1  Connecting the TIDA-010243 to the Metering Test Equipment
      2. 4.2.2  Power Supply Options and Jumper Settings
      3. 4.2.3  Electricity Meter Metrology Accuracy Testing
      4. 4.2.4  Viewing Metrology Readings and Calibration
        1. 4.2.4.1 Viewing Results From LCD
        2. 4.2.4.2 Calibrating and Viewing Results From PC
      5. 4.2.5  Calibration and FLASH Settings for MSPM0+ MCU
      6. 4.2.6  Gain Calibration
      7. 4.2.7  Voltage and Current Gain Calibration
      8. 4.2.8  Active Power Gain Calibration
      9. 4.2.9  Offset Calibration
      10. 4.2.10 Phase Calibration
      11. 4.2.11 Software Code Example
    3. 4.3 Test Results
      1. 4.3.1 SVS Functionality Testing
      2. 4.3.2 Electricity Meter Metrology Accuracy Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
      4. 5.1.4 Layout Prints
      5. 5.1.5 Gerber Files
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Current Measurement Analog Front End

The analog front end for current inputs is different from the analog front end for the voltage inputs. Figure 2-4 shows the analog front end used for a current channel, where the positive and negative leads from a CT for Phase A are connected to pins 1 and 3 of header J4. Again, similar circuitry is used for the CTs on each of the Phases B and C.

GUID-20230605-SS0I-BQMP-0VRZ-ZWF3MD2VVMHB-low.svgFigure 2-4 Analog Front End for Current Inputs

The analog front end for current consists of footprints for electromagnetic interference filter beads (R35 and R39), burden resistors for current transformers (R37 and R38), and an RC low-pass filter (R36, R40, C13, C15, and C14) that functions as an anti-alias filter.

As Figure 2-4 shows, resistors R37 and R38 are the burden resistors, which are in series with each other. For best THD performance, instead of using one burden resistor, two identical burden resistors in series are used with the common point being connected to GND. This split-burden resistor configuration makes sure that the waveforms fed to the positive and negative terminals of the ADC are 180 degrees out of phase with each other, which provides the best THD results with this ADC. The total burden resistance is selected based on the current range used and the turns ratio specification of the CT (this design uses CTs with a turns ratio of 2000). The total value of the burden resistor for this design is 12.98 Ω.

Equation 2 shows how to calculate the range of differential voltages fed to the current ADC channel for a given maximum current, CT turns ratio, and burden resistor value.

Equation 2. VADC_Swing,Current=±2(R37+R38)IRMS,maxCTTURNS_RATIO

Based on the maximum current of 100 A, CT turns ratio of 2000, and burden resistor of 12.98 Ω, of this design, the input signal to the current ADC has a voltage swing of ±918 mV maximum (649 mVRMS) when the maximum current rating of the meter (100 A) is applied. This ±918-mV maximum input voltage is well within the ±1.2-V input range of the device for the selected PGA gain of 1 that is used for the current channels.