TIDUF25 june   2023 ADS131M08 , MSPM0G1507

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 End Equipment
    2. 1.2 Electricity Meter
    3. 1.3 Power Quality Meter, Power Quality Analyzer
    4. 1.4 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 External Supply Voltage Supervisor (SVS) With TPS3840
      2. 2.2.2 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
      3. 2.2.3 Analog Inputs
        1. 2.2.3.1 Voltage Measurement Analog Front End
        2. 2.2.3.2 Current Measurement Analog Front End
    3. 2.3 Highlighted Products
      1. 2.3.1  ADS131M08
      2. 2.3.2  MSPM0G3507
      3. 2.3.3  MSP430FR4131 for Driving Segmented LCD Displays
      4. 2.3.4  TPS3840
      5. 2.3.5  THVD1400
      6. 2.3.6  ISO6731
      7. 2.3.7  ISO6720
      8. 2.3.8  TRS3232E
      9. 2.3.9  TPS709
      10. 2.3.10 TMAG5273
  9. 3System Design Theory
    1. 3.1  How to Implement Software for Metrology Testing
    2. 3.2  Clocking System
    3. 3.3  UART Setup for GUI Communication
    4. 3.4  Real-Time Clock (RTC)
    5. 3.5  LCD Controller in MSP430FR4131
    6. 3.6  Direct Memory Access (DMA)
    7. 3.7  ADC Setup
    8. 3.8  Foreground Process
      1. 3.8.1 Formulas
    9. 3.9  Background Process
    10. 3.10 Software Function per_sample_dsp()
      1. 3.10.1 Voltage and Current Signals
      2. 3.10.2 Frequency Measurement and Cycle Tracking
    11. 3.11 LED Pulse Generation
    12. 3.12 Phase Compensation
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Cautions and Warnings
    2. 4.2 Test Setup
      1. 4.2.1  Connecting the TIDA-010243 to the Metering Test Equipment
      2. 4.2.2  Power Supply Options and Jumper Settings
      3. 4.2.3  Electricity Meter Metrology Accuracy Testing
      4. 4.2.4  Viewing Metrology Readings and Calibration
        1. 4.2.4.1 Viewing Results From LCD
        2. 4.2.4.2 Calibrating and Viewing Results From PC
      5. 4.2.5  Calibration and FLASH Settings for MSPM0+ MCU
      6. 4.2.6  Gain Calibration
      7. 4.2.7  Voltage and Current Gain Calibration
      8. 4.2.8  Active Power Gain Calibration
      9. 4.2.9  Offset Calibration
      10. 4.2.10 Phase Calibration
      11. 4.2.11 Software Code Example
    3. 4.3 Test Results
      1. 4.3.1 SVS Functionality Testing
      2. 4.3.2 Electricity Meter Metrology Accuracy Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
      4. 5.1.4 Layout Prints
      5. 5.1.5 Gerber Files
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

ISO6720

The ISO6720 device is a high-performance, dual-channel digital isolator designed for cost-sensitive applications requiring up to 3000 VRMS (D package) isolation ratings per UL 1577. These devices are also certified by VDE, TUV, CSA, and CQC.

The ISO6720 device provides high electromagnetic immunity and low emissions at low power consumption, while isolating CMOS or LVCMOS digital I/Os. Each isolation channel has a logic input and output buffer separated by TI's double capacitive silicon dioxide (SiO2) insulation barrier. The ISO6720 device has 2 isolation channels with both channels in the same direction. Through remarkable chip design and layout techniques, the electromagnetic compatibility of the ISO6720 devices has been significantly enhanced to ease system-level ESD, EFT, surge, and emissions compliance. The ISO6720 family of devices is available in a 8-pin SOIC narrow-body (D) package and is a pin-to-pin upgrade to the older generations.

To test the active energy and reactive energy accuracy of a meter, pulses are output at a rate proportional to the amount of energy consumed. A reference meter can then determine the accuracy of the electricity meter by calculating the error based on these pulses and how much energy is provided to the meter. In this reference design, pulses are output through headers for the cumulative active and reactive energy consumption. Using the ISO6720 device provides an isolated version of these headers for connection to non-isolated equipment. In this design, the D package of the ISO6720 device is used, which provides an isolation voltage of 3000 VRMS for these signals. These isolated active and reactive signals can be set to have either a 3.3- or 5-V maximum voltage output by applying the selected maximum voltage output between the VCC (ISO_VCC) and GND (ISO_GND) of the isolated side.

This chip supports a signaling rate of 50Mbps and operates from a 1.71-V to 1.89-V and 2.25-V to 5.5-V supply in the temperature range: –40°C to +125°C.