TIDUF25 june   2023 ADS131M08 , MSPM0G1507

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 End Equipment
    2. 1.2 Electricity Meter
    3. 1.3 Power Quality Meter, Power Quality Analyzer
    4. 1.4 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 External Supply Voltage Supervisor (SVS) With TPS3840
      2. 2.2.2 Magnetic Tamper Detection With TMAG5273 Linear 3D Hall-Effect Sensor
      3. 2.2.3 Analog Inputs
        1. 2.2.3.1 Voltage Measurement Analog Front End
        2. 2.2.3.2 Current Measurement Analog Front End
    3. 2.3 Highlighted Products
      1. 2.3.1  ADS131M08
      2. 2.3.2  MSPM0G3507
      3. 2.3.3  MSP430FR4131 for Driving Segmented LCD Displays
      4. 2.3.4  TPS3840
      5. 2.3.5  THVD1400
      6. 2.3.6  ISO6731
      7. 2.3.7  ISO6720
      8. 2.3.8  TRS3232E
      9. 2.3.9  TPS709
      10. 2.3.10 TMAG5273
  9. 3System Design Theory
    1. 3.1  How to Implement Software for Metrology Testing
    2. 3.2  Clocking System
    3. 3.3  UART Setup for GUI Communication
    4. 3.4  Real-Time Clock (RTC)
    5. 3.5  LCD Controller in MSP430FR4131
    6. 3.6  Direct Memory Access (DMA)
    7. 3.7  ADC Setup
    8. 3.8  Foreground Process
      1. 3.8.1 Formulas
    9. 3.9  Background Process
    10. 3.10 Software Function per_sample_dsp()
      1. 3.10.1 Voltage and Current Signals
      2. 3.10.2 Frequency Measurement and Cycle Tracking
    11. 3.11 LED Pulse Generation
    12. 3.12 Phase Compensation
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Required Hardware and Software
      1. 4.1.1 Hardware
      2. 4.1.2 Cautions and Warnings
    2. 4.2 Test Setup
      1. 4.2.1  Connecting the TIDA-010243 to the Metering Test Equipment
      2. 4.2.2  Power Supply Options and Jumper Settings
      3. 4.2.3  Electricity Meter Metrology Accuracy Testing
      4. 4.2.4  Viewing Metrology Readings and Calibration
        1. 4.2.4.1 Viewing Results From LCD
        2. 4.2.4.2 Calibrating and Viewing Results From PC
      5. 4.2.5  Calibration and FLASH Settings for MSPM0+ MCU
      6. 4.2.6  Gain Calibration
      7. 4.2.7  Voltage and Current Gain Calibration
      8. 4.2.8  Active Power Gain Calibration
      9. 4.2.9  Offset Calibration
      10. 4.2.10 Phase Calibration
      11. 4.2.11 Software Code Example
    3. 4.3 Test Results
      1. 4.3.1 SVS Functionality Testing
      2. 4.3.2 Electricity Meter Metrology Accuracy Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
      4. 5.1.4 Layout Prints
      5. 5.1.5 Gerber Files
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

LED Pulse Generation

In electricity meters, the energy consumption of the load is normally measured in a fraction of kilowatt-hour (kWh) pulses. This information can be used to accurately calibrate any meter for accuracy measurement. Typically, the measuring element (the MSPM0+ microcontroller) is responsible for generating pulses proportional to the energy consumed. To serve both these tasks efficiently, the pulse generation must be accurate with relatively little jitter. Although time jitters are not an indication of bad accuracy, time jitters give a negative indication of the overall accuracy of the meter. The jitter must be averaged out due to this negative indication of accuracy.

This application uses average power to generate these energy pulses. The average power accumulates at every DRDY port ISR interrupt, thereby spreading the accumulated energy from the previous one-second time frame evenly for each interrupt in the current one-second time frame. This accumulation process is equivalent to converting power to energy. When the accumulated energy crosses a threshold, a pulse is generated. The amount of energy above this threshold is kept and a new energy value is added on top of the threshold in the next interrupt cycle. Because the average power tends to be a stable value, this way of generating energy pulses is very steady and free of jitter.

The threshold determines the energy tick specified by meter manufacturers and is a constant. The tick is usually defined in pulses-per-kWh or just in kWh. One pulse must be generated for every energy tick. For example, in this application, the number of pulses generated per kWh is set to 6400 for active and reactive energies. The energy tick in this case is 1 kWh / 6400. Energy pulses are generated and available on a header and also through light-emitting diodes (LEDs) on the board. GPIO pins are used to produce the pulses.

In the reference design, the LED that is labeled "Active" corresponds to the active energy consumption for the 3-phase sum. "Reactive" corresponds to the cumulative 3-phase reactive energy sum.

Figure 3-8 shows the flow diagram for pulse generation.

GUID-20230518-SS0I-3B5P-NTXP-27VCRMST1FTR-low.svgFigure 3-8 Pulse Generation for Energy Indication

The average power is in units of 0.001 W and a 1-kWh threshold is defined as:

Equation 18. 1-kWh threshold=10.001×1 kW×(Number of interrupts per second)×(Number of seconds in one hour)=1000000×8000×3600=0x1A3185C50000