TIDUF28 November   2023

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 LMG3422R030
      2. 2.2.2 ISO7741
      3. 2.2.3 AMC1306M05
      4. 2.2.4 AMC1035
      5. 2.2.5 TPSM560R6H
      6. 2.2.6 TPSM82903
  9. 3System Design Theory
    1. 3.1 Power Switches
      1. 3.1.1 GaN-FET Selection Criterion
      2. 3.1.2 HVBUS Decoupling and 12-V Bootstrap Supply
      3. 3.1.3 GaN_FET Turn-on Slew Rate Configuration
      4. 3.1.4 PWM Input Filter and Dead-Time Calculation
      5. 3.1.5 Signal Level Shifting
      6. 3.1.6 LMG3422R030 Fault Reporting
      7. 3.1.7 LMG3422R030 Temperature Monitoring
    2. 3.2 Phase Current Sensing
      1. 3.2.1 Shunt
      2. 3.2.2 AMC1306M05 Analog Input-Filter
      3. 3.2.3 AMC1306M05 Digital Interface
      4. 3.2.4 AMC1306M05 Supply
    3. 3.3 DC-Link (HV_BUS) Voltage Sensing
    4. 3.4 Phase Voltage Sensing
    5. 3.5 Control Supply
    6. 3.6 MCU Interface
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
      1. 4.1.1 PCB
      2. 4.1.2 MCU Interface
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
      1. 4.3.1 Precautions
      2. 4.3.2 Test Procedure
    4. 4.4 Test Results
      1. 4.4.1 24-V Input Control Supply
      2. 4.4.2 Propagation Delay PWM to Phase Voltage Switch Node
      3. 4.4.3 Switch Node Transient at 320-VDC Bus Voltage
      4. 4.4.4 Phase Voltage Linearity and Distortion at 320 VDC and 16-kHz PWM
      5. 4.4.5 Inverter Efficiency and Thermal Characteristic
        1. 4.4.5.1 Efficiency Measurements
        2. 4.4.5.2 Thermal Analysis and SOA Without Heat Sink at 320 VDC and 16-kHz PWM
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 Layout Prints
      4. 5.1.4 Altium Project
      5. 5.1.5 Gerber Files
      6. 5.1.6 Assembly Drawings
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

GaN_FET Turn-on Slew Rate Configuration

The LMG3422R030 allows adjustment of the drive strength of the device to obtain a desired slew rate, which provides flexibility when optimizing switching losses and noise coupling. Generally, high slew rates provide lower switching losses, but high slew rates can also create higher voltage overshoot, noise coupling, and EMI emissions. In this design the turn-on slew rate is configured to 30 V/ns through a 200-kΩ resistor (R9 for top-side and R19 for the bottom side GaN-FETs). A 100-pF capacitor (C8 for top-side and C25 for bottom side GaN-FETs) is placed in parallel for transient noise rejection. The turn-on slew rate can be adjusted by changing R9 for the top-side and R19 for the bottom side LMG3422R030 respectively, as described in the LMG3422R030 (LMG342xR030 600-V 30-mΩ GaN FET With Integrated Driver, Protection, and Temperature Reporting) data sheet. The maximum configured slew rate in this design is not to exceed 100 V/ns, so as to not exceed the typical specified common mode transient immunity (CMTI) of the isolated modulator AMC1306M05 and digital isolator ISO7741.