TIDUF48A November   2023  ā€“ February 2024 THS6222 , THS6232

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 THVD8000DDF
      2. 2.2.2 THS6222RGTT
      3. 2.2.3 MSPM0G350x
      4. 2.2.4 TPS26624DRCR
      5. 2.2.5 LM5164QDDARQ1
      6. 2.2.6 TPS560430X3FDBVR
      7. 2.2.7 TMUX1204DGSR
    3. 2.3 Design Considerations
      1. 2.3.1 Modulator and Carrier Frequency Selection
      2. 2.3.2 Power Consumption and Gain of the THS6222 Line Driver
      3. 2.3.3 Front End and Discrete Filter
      4. 2.3.4 THVD8000 Schematic
      5. 2.3.5 Board Pinout
  9. 3Hardware, Software, Testing Requirements and Test Results
    1. 3.1 Test Setup
      1. 3.1.1 Powering the TIDA-010935
    2. 3.2 Test Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Documentation Support
    3. 4.3 Support Resources
    4. 4.4 Trademarks
  11. 5About the Author
  12. 6Revision History

Key System Specifications

Table 1-1 System Specifications for PLC
PARAMETER SPECIFICATION
Input voltage 13.5 Vā€“50 V
Current limit protection 500 mA
Output voltage 12 V
Maximum driver current 338 mA
Selectable carrier frequencies 125 kHz, 500 kHz, 2 MHz, 5 MHz
Baud rate 9600
Board size 80 mm Ɨ 60 mm
GUID-E6E50D60-2200-40DA-9902-3DC3155245EF-low.gif
CAUTION:

Do not leave the design powered when unattended.

GUID-E6E50D60-2200-40DA-9902-3DC3155245EF-low.gif
WARNING:

External Connections: All external connections to the hardware must stay within the recommended operating conditions and intended usage for all hardware and components connected in the system.

GUID-0A112DE2-4780-43B9-B438-8187C5499087-low.png
WARNING:

High voltage! Accessible high voltages are present on the board. Electric shock is possible. The board operates at voltages and currents that can cause shock, fire, or injury if not properly handled. Use the equipment with necessary caution and appropriate safeguards to avoid injuring yourself or damaging property. For safety, use of isolated test equipment with overvoltage and overcurrent protection is highly recommended.

TI considers it the user's responsibility to confirm that the voltages and isolation requirements are identified and understood before energizing the board or simulation. When energized, do not touch the design or components connected to the design.

GUID-E6E50D60-2200-40DA-9902-3DC3155245EF-low.gif
WARNING:

TI intends this reference design to be operated in a lab environment only and does not consider the board to be a finished product for general consumer use. The design is intended to be run at ambient room temperature and is not tested for operation under other ambient temperatures.

TI intends this reference design to be used only by qualified engineers and technicians familiar with risks associated with handling high-voltage electrical and mechanical components, systems, and subsystems.

There are accessible high voltages present on the board. The board operates at voltages and currents that can cause shock, fire, or injury if not properly handled or applied. Use the equipment with necessary caution and appropriate safeguards to avoid injuring yourself or damaging property.